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ABSTRACT

Legged animals can traverse significantly more of the Earth’s land mass than man-made

wheeled and tracked vehicles [1]. Their impressive mobility is largely due to multiple dexterous

legs and the robust algorithms that coordinate and control them. A legged animal such as a

squirrel can exhibit multiple locomotion modes such as walking, running and jumping and also

multiple gaits or leg phase timings within each mode. A robot that could mimic this level of

robust locomotion would be highly useful for planetary exploration, military reconnaissance, and

time-critical search and rescue in cluttered or collapsed buildings.

A number of biological studies on animal walking have provided information concerning

the underlying control system. Studies in insect walking have revealed a distributed local-leg

control that generates quasi-rhythmic movement by sensing the environment using local feedback

loops. Ground reaction forces produced by an insect during walking and running, along with joint

angles, have been recorded by various studies. The primary goal of this research is to develop a

distributed local-leg control algorithm to generate walking behaviors on uneven terrain using local

force feedback. The intended purpose of this research is to pursue a biologically-inspired control

algorithm that can be used as a scientific tool to study walking and provide a better understanding

of local-leg control.

Control of a multi-jointed robot system has traditionally been done using position control.

But as the number of degrees of freedom in systems started increasing, position control of each

actuator using a centralized controller became cumbersome. The control of a walking robot is a

xi
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more complex problem as stability also becomes an issue. Much research has been concentrated

towards creating rhythmic or quasi-rhythmic movements which can be used for walking in pre-

dictable environments. However, walking on uneven terrain requires one to incorporate different

issues, such as but not limited to, the mechanical properties of the leg, coordination between legs,

as well as higher level decisions based on external information and internal body states. Much of

the current research in legged robots is directed towards sensing the terrain so that the walking

sequence of the robot can be pre-determined. This requires a large array of sensors, off-line

as well as in real-time, to accurately sense the terrain increasing the cost and complexity of the

robot. Even if the body path and footholds are planned, a real-time module is required to handle

small perturbations and slips adding to the complexity. Like animal walking, using force feedback

can greatly improve walking behavior in a robot. However, due to the unreliable nature of force

sensors, no other control algorithm for walking has been able to use continuous force feedback for

walking on uneven terrain.

The distributed local-leg controller developed in this research, called Force Threshold-

based Position (FTP) controller, is able to generate walking behaviors robust to terrain elevations

without using visual sensors, a priori terrain information, inertial sensing, or inter-leg communica-

tion. The controller uses local force feedback to control each leg and is, therefore, very responsive

to terrain changes when compared to a centralized controller arbitrating all of the joint positions

in a high degree of freedom system. The controller is implemented with gait phasing dictated by a

static timer. By integrating force feedback with position control, the FTP controller combines the

advantages of position control with robustness to uneven terrain. This work provides the minimum

interaction needed between joints or legs for the robot to navigate a rugged terrain. This work

provides insight into the role of active elements in the local leg feedback controller that allow for

responsiveness over uneven terrain, and can be used to reveal the underlying structure insects use

to generate the forces needed for different behaviors and gaits on flat and uneven terrain.

xii
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The FTP controller has been realized and studied on a full 3D simulation model and on

an experimental hexapod system. Multiple gaits along with turning and side stepping have been

implemented and tested on the system. The FTP controller is built as an low-level reflexive system

which would be guided by a high level controller overseeing its operation, intermittently passing

directional commands and control information. The objective is to make the walking behavior a

background process such that the robot can focus on its mission objectives. The FTP controller

also has potential for expansion to bipeds, quadrupeds and other biologically-inspired forms.

xiii
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CHAPTER 1: INTRODUCTION

1.1 Motivation

Legged animals have a remarkable ability to adapt their walking behavior based on the

terrain and threat level. Animal legs appear in many arrangements and morphologies, and are

capable of multiple locomotion modes. Despite the versatility in arrangement seen in nature,

every leg operates under the same intermittent paradigm of flight and stance phases (Fig. 1.1).

All terrestrial animals appear to exhibit spring-mass dynamics, whether moving on two, four, six

or eight legs [2]. Foot forces are applied to the ground to propel and stabilize the body during the

stance phase, and the leg is returned from its posterior position to a forward position during the

flight phase.

A single leg morphology can utilize multiple mobility modes to circumvent obstacles or

gaps in the terrain, which further outpaces the capabilities inherent to wheels that can nominally

move over near-horizontal terrain. Even within a single mobility mode, such as quadruped running,

legs can be coordinated to transition between the canter, trot, or gallop in order to increase stability

or conserve energy in response to the terrain or threat level. This level of versatility can be achieved

because of the high number of degrees of freedom (DoFs) apparent in many legs.

Biological evidence supports the notion of a hierarchical control system that distributes the

leg coordination and control effort to multiple systems in the body [4]. Research on decerebrated

cats shows that the brain is not required for gait selection and coordination over a range of walking

and running speeds [5]. This research illuminated some of the local leg feedback algorithms that

1
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Figure 1.1: Center-of-mass (COM) dynamics for running animals with two to eight legs. All

terrestrial animals appear to exhibit spring-mass dynamics, whether moving on two, four, six or

eight legs. Multiple legs act in concert to produce the effective leg-spring dynamics. (Taken

from [3] - see Appendix B.1)

may be responsible for joint-level coordination during leg movement. These control loops sense

and command control elements only within a single leg, and the limited number of control elements

combined with the short transmission lines allow these control loops to be much more responsive

than a higher-level controller potentially responsible for sensing and controlling multiple legs.

The main motivation behind distributing the leg coordination and control is that the control

of a high degree of freedom multi-legged robot can potentially be done using small, fast and energy

efficient control systems which are highly responsive to terrain changes while indirectly providing

motion control and tilt stability.

1.1.1 Need for Legged Systems

Legged systems have the potential for use in planetary exploration, time-critical search and

rescue, military reconnaissance, and a wealth of other tasks in which the terrain is complex or rife

2
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with uncertainty. Mobility comparable to biological systems such as squirrels, cockroaches and

even humans will be necessary to effectively perform in these arenas.

Wheels are excellent on constructed surfaces but perform poorly on natural uneven sur-

faces. The main advantage of legged systems is that on uneven surfaces, selection of each leg

foothold can be optimized to provide support and result in forward movement irrespective of the

terrain. Unlike a wheeled system, which needs a continuous path to travel, a legged system can step

over isolated paths to travel over uneven surfaces without much loss of stability. Since multiple

mobility modes can be implemented on a legged system, they are a prime candidate for terrains

rife with uncertainty. The legged mobility mode can be chosen based on the terrain and/or the

situation.

The benefit of legged systems over wheeled vehicles is not only more mobility over highly

irregular terrain, but it also holds potential for jumping, climbing, and swimming.

1.1.2 Difficulties with Walking

A high number of degrees of freedom (DoFs) can result in versatility and robustness, but

can be very difficult to coordinate and control. To make this control problem more manageable,

gaits have been isolated and studied individually [6–10]. Although legged systems with articulating

joints have been developed to perform singular mobility tasks [11–13], many of the underlying

control algorithms for these systems are gait or task specific, and no link to multi-modal or multi-

gait mobility is laid out.

The control of legs requires the interplay between supervisory commands, central pattern

generators (CPGs), and neural feedback. Control algorithms have been developed which alter the

timing of leg CPGs based on sensory feedback such as foot contact and body tilt angles [14, 15].

In some CPG implementations, the joint torques during the stance phase are direct outputs of the

CPG, and in other implementations, the CPG controls the leg phasing between stance and flight,

3
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and joint torques are computed using other feedback-based equations. In both controller types,

inertial measurements of pitch and roll are used as feedback. Inertial signals, however, can be

plagued by significant noise, delay and drift, and algorithms dependent on accurate inertial sensing

become very vulnerable at high running speeds.

Joint torques can also be computed by solving the inverse dynamics problem for all legs

in contact with the ground [16]. In biped control, the system is over determined during periods of

single-leg ground contact and only moderate tilt and velocity correction can be achieved. Periods of

overlapping foot contact result in an underdetermined system and allow for additional constraints

on the joint outputs to achieve significant correction. During high-speed running, the coupling of

legs during the double support phase presents a challenging logistics problem for the rapid com-

munication of all joint positions for all legs in contact with the ground. This problem is amplified

for quadruped and hexapod systems, and becomes impractical for higher order arthropods.

1.2 Legged Robot Control

Some researchers have achieved remarkable mobility in a single mode, and utilizing a sin-

gle gait, by implementing extracted principles of legged locomotion on systems with significantly

reduced DoFs [17–20]. Some of the significant contributions in the field of legged robots are

discussed in this section.

1.2.1 Legged Robots on Uneven Terrain

To navigate through natural or uneven terrain, legged systems have been developed which

are capable of sensing the terrain in order to plan their steps accordingly [21, 22]. The sensed

terrain can be mapped and used to plan a sequence of steps to reach the goal position and also

to find the optimal foot placement. Even gait selection could be done using the mapped terrain.

4
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This requires the terrain information to be accurate and many systems pre-compute the terrain

information to pre-plan each step before execution [23]. Some systems then use reactive behaviors

to re-compute and re-plan their steps in real time in case of a false step or failure [24]. Such

systems require fast and accurate body state information and use off-board cameras and motion

capture systems for proper functioning [21].

RHex [25] is able to achieve remarkable mobility over uneven terrain by utilizing extracted

biological principles of legged locomotion with reduced degrees of freedom (DoF) legs. By using

legs with passive compliance, RHex is able to navigate through uneven terrain without the need

for visual terrain sensing. Many dynamic behaviors have been implemented on the RHex such as

running [26], stair climbing [27] and swimming [28]. Like RHex, Whegs [29] series of robots

also use reduced DoF legs and combine the advantage of wheels and legs to generate a method of

locomotion able to climb obstacles higher than an equivalent wheeled vehicle could climb. The use

of systems with reduced DoF have also been adapted by other researchers with good results [17–

20]. However, by using reduced degrees of freedom, systems sacrifice maneuverability needed for

applications like planetary exploration.

A biologically inspired control mechanism, developed by Goldschmidt et al. [30], tries to

generate basic walking behavior in a hexapod robot by using a neural control mechanism. The

hexapod robot uses ultrasonic, contact, and infrared sensors which act as input to the reactive

neural controller whose outputs drives each joint in the robot.

Lewinger et al. [31] developed a computationally simple intra-leg joint coordination al-

gorithm called SCASM (Sensory Coupled Action Switching Modules) which uses a joint state

machine to determine whether each joint should be flexing or extending. Transitions between

states were based on local leg feedback loops created using synthesized biological data [32].

SCASM was able to produce basic walking motions on different uneven terrains on a multiple

legged platform [33].
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Other biologically inspired robotic systems make use of compliance in the legs to achieve

dynamic and versatile locomotion. StarlETH [34] is a compliant quadruped robot that uses linear

compression springs to decouple the motor and gearbox from the joint and is robust against falling

impacts. StarlETH requires accurate body state information for locomotion and uses a Microsoft

Kinect sensor along with a motion capture system for operation. Since the use of compliance

reduces the need to model the terrain, systems like StarlETH are able to perform highly dynamic

maneuvers. Even though many significant biologically-inspired robotic systems have been built,

missing from the current horizon of legged research on uneven terrain is of implementation of

biologically-inspired local leg feedback algorithms.

1.2.2 Robots Using Force Feedback

The Spring-Loaded Inverted Pendulum (SLIP) model derived from studies on animal loco-

motion has been used as a basis for a large number of walking robots [2]. Figure 1.2 shows the use

and implementation of the SLIP model in robots. The ground reaction forces found in cockroach

locomotion are recreated using oscillators and springs to generate a running behavior [35]. The

lower panel shows the typical vertical and fore-aft forces experienced during rapid running by each

system.

BigDog [37] from Boston Dynamics adapts to uneven terrain by adjusting the footfall

placement to control the body posture. By coordinating the kinematics of the legs with their

ground reaction forces, BigDog is able to navigate slopes without higher level terrain sensing.

The BigDog robot uses approximately 50 sensors [37] including inertial sensors as well as sensors

at the joint level for sensing the position, motion and force. Beyond very general principles,

not much information about the leg level controller is given. BigDog has been observed using

a walking canter and running trot but it is unclear if these two gaits are using similar control

algorithms or vastly different approaches. The Legged Squad Support System (LS3) [38] is one of
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Figure 1.2: The Spring-Loaded Inverted Pendulum (SLIP) as a model for the center-of-mass

(COM) dynamics of animals and legged machines. (Taken from [36] - see Appendix B.2)

the newer robots from Boston Dynamics that can walk outside over complex terrain, but not much

information about its control algorithm has been published either.

A quadruped walking algorithm developed by Kalakrishnan et al. [39] uses learning algo-

rithms to pre-process an uneven terrain to generate an approximate body path and joint trajectories

at each step that are modified in real time to increase robustness. The system is implemented

on Boston Dynamics LittleDog quadruped robot [40]. The joint trajectories are adjusted in real

time using the measured foot forces and position-based torques previously calculated. Due to its

reactive component, the controller is robust towards non-perceived obstacles. However, the system

requires an external motion capture system and inertial data as well as force and position sensors.

Emergent gaits based on neurobiological mechanisms have been introduced by Lewinger

and Quinn [41]. The de-centralized joint control network proposed by them decouples the joints

whose direction of motion is influenced using the sensory information. The sensory information
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such as joint angle and joint load are used to generate stepping motion and achieve elevator and

search reflexes in rough terrain. The joint load gives information about the interaction of the leg

with the environment influencing the stepping pattern of the leg as well as other legs in the system.

For example, a foot touchdown causes the joint loads for the leg to be changed causing it to retract

but also influence other legs that can start to protract and enter the swing phase. The joint load is

used only to influence the stepping pattern of the legs. Disadvantage of using such this mechanism

is explained in Section 3.4.3.

1.3 Objectives

Extensive research in the area of local leg control needs to be done to find the scope in

multi-legged robots. Such research will not only provide an insight to the possibilities a local leg

controller can achieve but also the ease at which local leg control can be implemented.

Mimicking the performance of the biological local leg controller is the primary pursuit

of this work. An effective local leg controller will enable legged systems to rapidly coordinate

high degree of freedom legs by distributing the control effort, as opposed to a single controller

coordinating all legs. The afferent communication from all joints, computation of the appropriate

response, and efferent communication back to the joints can be burdensome for a single controller,

which has led much of the research in legged locomotion toward legs with a reduced number of

controllable joints at the expense of dexterity. Achieving more complex maneuvers like jumping,

climbing, and swimming require legs with high dimensionality for control and biology provides

the means to rapidly coordinate these joints: the local leg controller.

A fully functioning local-leg controller should result in or allow for the following:

1. Distributed local-leg controller: Distributed controller for each leg with no explicit informa-

tion exchanged between them during walking.
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2. High leg dimensionality: Each leg should have at least three degrees of freedom.

3. Localized control: Walking pattern only dependent on the local sensed information.

4. Ground reaction forces: Local ground reaction forces are used for effective control.

5. No feedback of body state: No inertial information about the body should be required for

leg control.

6. Blind system: No information about ground is pre-programmed or sensed before walking.

7. Limited sensing: No additional sensors should be required for walking while using force

feedback.

1.4 Contributions

The main contribution of this research work is the development of a local leg feedback

controller and its implementation in experimental hardware. This biologically inspired control

strategy enables the application of biological hypothesis to hardware models for testing and en-

hancement. Advanced maneuvers such as turning and side stepping have also been implemented

and tested. Another contribution of this research work is the implementation of multiple gaits to

walk on uneven terrain. The implementation of multiple gaits along with maneuvering capabilities

on a distributed local-leg controller, to the best knowledge of the author, is the first among its type.

1.5 Organization

Chapter 2 provides a brief background of the biological studies that have been done over

the years in terms of animal locomotion. This chapter also presents the main inferences drawn

from these studies which inspire this research work.
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Chapter 3 describes the current use of position control along with its advantages as well as

disadvantages. The possible use of position control in creating a distributed local-leg algorithm is

investigated in this chapter along with their possible advantages and disadvantages. This chapter

represents the evolution of the local feedback algorithm providing an insight during various stages

of development.

Chapter 4 describes the distributed local-leg feedback algorithm, called the Force Threshold-

based Position (FTP) controller, developed for walking over uneven terrain. A detailed description

of the algorithm along with walking states and their intended operation is provided in this chapter.

Chapter 5 describes the structure of the hexapod, developed in simulation and in hardware,

to implement and test the FTP algorithm. This chapter describes the necessary hardware required

for the FTP algorithm to work smoothly over uneven terrains.

Chapter 6 provides a detailed list of test results, both in simulation and hardware, showing

the working of the FTP algorithm along with its limitations. Analysis of the system in terms of

code and hardware is provided along with discussion on the distributed nature of the system.

Chapter 7 describes the modifications done to the FTP algorithm to include turning and side

stepping apart from straight walking. The limitations of the current hardware system are presented

and a solution working under the limitations is provided along with results in both simulation and

hardware.

Chapter 8 summarizes the contributions of this work and future research topics are pre-

sented.
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CHAPTER 2: BACKGROUND RESEARCH1

2.1 Introduction

Biological studies of animal and human behavior have often contributed to the field of

legged robotics. Models drawn from animal or human behavior and movement have been well

studied and used as a basis for creating control algorithms for mechanical devices.

2.2 Biological Studies

Biologists comparing legged animals with differing morphology have observed general

force patterns during stance while animals walk, run, jump and climb [45–48]. Biologists have also

observed that legged animals employ whole-body dynamics during locomotion in which each leg

produces a similar ground force pattern that sums up to produce the whole-body pattern [35, 49].

Some of the studies influencing this research work are listed in this chapter.

2.2.1 Ground Reaction Forces

Full et al. [50] measured the three dimensional ground reaction forces produced by individ-

ual legs of the cockroach while running. Full et al. found that vertical ground reaction forces were

similar for each leg but found differences in lateral and fore-aft forces between fore, middle and

1Portions of these results have been adapted from previously published publications {[42], [43], [44]}.
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hind legs. Similar force patterns were also found by Goldman et al. [35] while recording forces of

vertically climbing cockroaches and geckos (Fig. 2.1), and by Cruse [51] for a walking stick insect.

Even though the magnitude of force recorded in these experiments was different and dependent on

the morphology and locomotion of the animal, the force patterns were similar. The magnitude of

the force was dependent on the weight of the animal. Figure 2.2 shows the general template for

vertical ground reaction force. At each step, a vertical ground reaction force greater than the body

weight of the animal is produced by the active legs during walking.

Figure 2.1: Fore-aft (blue) and lateral (green) ground reaction forces during walking for (a) a

cockroach, (b) a gecko and (c) the spring-mass model template. Broken lines indicate body weight.

Black bars represent stance period and white spaces the swing period. (Taken from [35] - see

Appendix B.1)

For a distributed local-leg controller to work, each leg will have to produce the required

force to support the body. Ground reaction force templates (similar to one in Fig. 2.2) will be used

in this research to make sure appropriate foot forces are produced by each leg to support the body

weight.
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Figure 2.2: A spring-mass model template for vertical ground reaction force during a typical

running step. The vertical foot forces during walking have a much less predictable shape because of

the overlapping ground contacts and numerous stepping patterns achievable. Dashed line indicates

body weight of the animal. The black bar represents the stance period and white space the swing

period. (Adapted from [42])

2.2.2 Local Sensing

Insect and mammalian legs use load measuring sense organs. Cockroach legs have sense

organs called Campaniform Sensilla that act as a strain gauge that detect the load on the leg through

strains in the exoskeleton [52]. Research has found the presence of force feedback loops in the local

control circuits of insect and mammalian legs which react rapidly to changes in load. Positive force

feedback has been found to be an important component contributing to load compensation during

sudden changes in the load due to instability or oscillations in the body [53].

Sensors measuring the foot forces, equivalent to the load measuring sense organs, will be

used in this research as force feedback to make sure appropriate force is being produced by each

leg.
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2.2.3 Leg Coordination

Work by Bender et al. [54] showed differences in leg coordination between the cockroach

alternating tripod gait when moving at relatively slow speed versus higher speed running. It was

hypothesized that the triggers for elevation and depression of the leg at low speed are largely

dictated by the sensory reflexes in the local leg networks. As these controllers have no direct inter-

action with each other, it is not surprising that the resultant leg phasing is not strictly synchronized.

The tightly coupled leg phasing observed at high speeds is potentially the result of a higher level

pattern-generated circuit.

This research is targeted towards fast walking and therefore, tightly coupled leg phasing is

used. Tightly coupled leg phasing between different legs can be generated without communication

by either using a global clock or by using a start signal. Once a start signal is provided to all legs,

each leg can keep track of their walking phases.

2.2.4 Leg Coupling

Studies done by Cruse et al. [55, 56] on stick insects suggested that each individual leg

acts as an independent height controller for the body on uneven surfaces. The study also showed

that no neural couplings between the legs of the stick insect needs to be assumed to exist and only

mechanical coupling between legs is sufficient to explain the results found in the study. Other

studies [55, 56] support the idea of creating a distributed local controller for walking.

2.2.5 Control of Body Height

Based on the experimental results on a stick insect walking over obstacles, one study [57]

concluded that each leg of the stick insect acts as an elastic system which controls the distance
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between body and surface independent of the other legs. This statement was based on indirect

evidence as the data produced by the study could only be explained if each leg was assumed as an

independent height controller. This elastic system could either be represented by muscle elasticity

or a resistance reflex system.

Figure 2.3: The force-body height characteristic for a stick insect during open-loop system (◦)

experiment and closed-loop system (•) experiment. In open-loop results, the independent variable

is height and for closed-loop results, the independent variable is load. (Taken from [58] - see

Appendix B.1)

Another study by Cruse et al. [58] confirmed the results found in the previous study [57].

Cruse et al. found that as the distance between the body of the stick insect and the ground is
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changed, each leg tried to pull or push on the ground to achieve a certain leg length. During

the study, the stick insect was attached to a fixed plate with its legs on a wheel platform. In one

experiment, the distance between the stick insect and the wheel platform was fixed and force on the

wheel platform by the leg was recorded (open-loop experiment) and in another, the wheel platform

was not fixed and the stick insect was allowed to select the distance between its body and the

platform (closed-loop experiment). Figure 2.3 shows the results from the study. Cruse et al. found

a specific distance where the force was zero called the ’zero-force distance’. The study found as the

distance between the stick insect body and platform became higher (than the zero-force distance),

the leg produced a force that tried to pull the platform towards its body (to achieve zero-force

distance) with a force proportional to the distance and, conversely, as the distance became smaller,

the legs produced a force that pushed the wheel away from the body.

The idea of an individual leg acting as an independent height controller for the body can be

used by a local-leg controller to control the body height of the robot. By controlling the length of

each leg, the ’zero-force distance’ or the body height can be achieved. Even though the biological

reasons for selecting a specific ’zero-force distance’ by the stick insect is not known, a body height

for a robot can be chosen dependent on other criteria such as the ability to walk over various kinds

of terrains.

2.2.6 Body Posture

Cruse [57] provided a study which tried to find the body position of a stick insect when

walking on uneven surfaces. The body of the stick insect is divided in to three thoracical segments

(prothoracic coxae, mesothoracic coxae, and metathoracic coxae) which are at different heights

from the ground. Figure 2.4 shows the schematic of a stick insect along with the three height of the

three thoracic segments. The height of these three thoracic segments was measured in this study

as the stick insect walked over various terrains.
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Figure 2.4: Schematic presentation of the stick insect showing heights of the coxae of the three

thoracical segments (prothoracic coxae [•], mesothoracic coxae [+], and metathoracic coxae

[N]) and body angles (α and β ) with respect to the horizontal baseline. (Taken from [57] - see

Appendix B.3)

Figure 2.5 shows the heights of the coxae of the three thoracical segments as the stick

insect walks over three separate terrains (a step up, a step down and an obstacle). Cruse found that

each pair of legs of one segment tried to maintain a definite height for its segment. Cruse found

that as when the terrain changes were smaller (shown in Fig. 2.5), the body angles (α and β ) had

positive angles and there was little change in the body posture. As can be seen in Fig. 2.5, the

three thoracical segments heights return back to their original height after the insect walks over the

change in terrain. However, when terrain change is larger, the body angles and thoracical segments

heights change to walk over the terrain.

Similar results were found on cockroaches by Watson et al. [59]. The cockroach was able

to scale smaller obstacles with little change in running movements and body posture while higher

obstacles required altered gaits, leg positions and body posture. Body adjustments necessary for

climbing over higher obstacles were done before approaching the obstacle. The cockroach can

assess the height of the obstacle and change its body posture to approximately match the change

in height to climb over it.

Since insects are able to scale moderate terrain changes without the need for posture

control, adding a body joint is not considered in this research.
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Figure 2.5: The heights of the coxae of the three thoracical segments when the insect walks over

(a) a step up, (b) a step down, and (c) an obstacle. (Taken from [57] - see Appendix B.3)
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2.2.7 Terrain Sensing

Judging by the relatively poor performance of the legs when rapidly walking over uneven

terrain [60], it seems clear that the legs do not have an accurate model of the ground and the

interaction from the supervisory controller is likely nothing more than a binary cue to initiate and

conclude the stance phase. The local leg controller is then responsible for seeking and interacting

appropriately with the ground in a way that propels the body without destabilizing the body tilt

axes. And because of the rapid stride period when running, it is also unclear what role, if any,

inertial sensing can have in a single step [61].

Since this research is targeted towards fast walking, no sensing of the terrain or a priori

terrain information will be used for walking. The research will focus towards creating a blind

walking behavior using only local sensing.

2.3 Summary

This chapter gave a very brief introduction to the biological studies trying to find the

underlying control used by animals for walking on uneven terrain. Even though not every scenario

and environmental stimulus has been studied, information is present which can provide a limited

understanding of animal locomotion. Using some basic information, this research work tries to

create a local-leg control system which can provide a better understanding of the local-leg control

and shed more light in understanding animal locomotion.
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CHAPTER 3: AUGMENTED POSITION CONTROL1

3.1 Introduction

For many years, position control has been used to control walking systems [64–67]. Once

joint angles are chosen for the leg touchdown position and the desired body motion during stance

is known, the desired joint angles throughout the stance phase can be computed kinematically.

This chapter explains the use of position control along with its potential use in distributed local-leg

control algorithm.

Side View

Figure 3.1: Controlling a single leg using a position controller.

Figure 3.1 shows a typical example of a leg trajectory under position control. The dotted

line with arrows shows the desired trajectory and the direction of foot with respect to the body.

The leg tries to achieve this trajectory by comparing the current position of the leg with the desired

position. A proportional controller generates the foot force to track the desired trajectory by

1Portions of these results have been adapted from previously published publications {[42], [62], [63]}.
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fposition = k
P
· (pdesired − pmeasured) . (3.1)

The proportional gain, k
P
, is tuned to generate smooth error correction. In the hexapod alternating

tripod gait, three legs cycle in phase together to form a tripod of support when in stance phase.

Position control of each leg is executed independently, without knowledge of the other leg states,

or even if those legs have achieved ground contact. During periods when all six legs are on the

ground, each leg continues to execute its desired position trajectory and has no need for interleg

sensing or communication. The vertical position is shown here, but fposition is a 3-dimensional

vector representing the desired force in three directions.

3.2 Advantages of Position Control

A strength of position control is the inherent motion control and tilt stability that arise

from well-designed trajectories. Because these trajectories are often kinematically-computed from

stable and smooth body motions on well-modeled terrain, legs moving through their desired po-

sition can result in smooth body motions without the use of vestibular sensing of the body or

information about the terrain. On complex terrain when only feed-forward trajectories dictate the

desired foot position, the interaction of the foot with the ground becomes unpredictable causing

sluggish forward movement and, in some cases, no forward motion is possible.

3.3 Position Control on Uneven Terrain

Figure 3.2 shows the advantages and disadvantages of using position control. While posi-

tion control works well on a flat terrain (as seen in Fig. 3.2a), the controller becomes unstable on

uneven or natural terrain. Figure 3.2b shows the situation when a pure position controller steps on
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(a): Flat terrain
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Figure 3.2: Advantages and disadvantages of using a position controller.

a terrain height which is higher than the desired level. This causes body height to increase and may

cause tilt.

One way to alleviate this problem is to sense the whole terrain before walking and create a

trajectory based on the sensed terrain. This approach needs the terrain to be pre-processed using a

number of sensors so that a reliable trajectory can be generated before the robot can walk. However,

even a reliable trajectory generation may not lead to successful walking due to some perturbations

or slips during walking. Therefore, a reactive component is required, along with a separate set of
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sensors, to update the trajectory when an anomaly happens. Such an approach is usually costly and

complex and is used to generate walking behaviors on highly uneven terrain.

Another way is to change the walking pattern at each step based on the terrain height sensed

by each leg using local sensors. This approach needs only local sensor information like ground

forces to effectively generate a walking pattern in real time. This approach does not need any

pre-processing or information about the terrain leading to a faster system more responsive to the

terrain. This approach is usually used on relatively moderate terrain.

3.4 Using Force with Position Control

Ground reaction force profile patterns described by biological research can be used in

conjunction with position control to alleviate the problems of position control while walking on

uneven terrain. Following section describes some of the ways in which these force profiles can be

used.

3.4.1 Hybrid Force Position (HFP) Control

One way to create the required force profile for each leg is to compute the torque which

would create the necessary force profile needed for each leg. The vertical ground reaction force

template like the one shown in Fig. 2.2 can be used as the desired vertical force needed at each step

for walking. The Hybrid Force Position (HFP) controller tries to achieve the force profile at each

step. Figure 3.3 shows the behavior as the HFP controller walks on flat and uneven terrain. The top

subplot of Fig. 3.3 shows the expected vertical ground reaction forces for a single leg during two

steps. When the ground is flat, the foot touchdown happens at the expected time and desired force

profile can be created by the HFP controller. However, if the foot touchdown happens later due to

lower terrain or step, the foot forces generated using the HFP controller will not be sufficient to lift
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the body (Thick dotted line in Fig. 2.2). This is because the HFP controller tries to eliminate the

force error at each step. Unless the step period for each step is made variable and dependent on

when the touchdown happens, matching the force profile using the HFP control would be difficult.

step1 step2
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commanded (HIP)

commanded (HFP)

Figure 3.3: Expected ground reaction forces (and equivalent impulse) when walking on a flat

terrain (step 1) and a lower terrain (step 2) using separate controllers. (Adapted from [63])

3.4.2 Hybrid Impulse Position (HIP) Control

The vertical force trajectory can also be represented as an impulse, drawn in the bottom

subplot of Fig. 3.3. The impulse, or area under the force curve, is used as the reference trajectory

for the HIP controller. This is different from the HPF controller that uses force error directly.

Step 2 in Fig. 3.3 illustrates this difference. Ground contact is delayed likely due to an unexpected

drop in the terrain. After contact, the commanded foot force from the impulse component to the

HIP controller is computed by

fimpulse = k
I
· (Idesired − Imeasured)/∆t. (3.2)
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The measured impulse immediately after contact is zero since the leg has not applied any forces on

the ground. The proportional gain, k
I
, is chosen to generate smooth error correction. Ultimately,

the commanded force increases above the desired force profile in order to eliminate the error on

the impulse curve.

If the ground is not detected when expected, the impulse controller will generate forces at

the foot that seek the ground. Without these forces, the foot may not contact the ground at all. The

HIP controller, however, goes further by requiring legs that contact the ground late to still generate

the desired impulse. Vertical impulse is responsible for lifting the body, and a less-than-desired

impulse will result in inadequate body height for walking over rough terrain.

Once the position and impulse forces have been computed, fposition and fimpulse respec-

tively, the following equations are used to determine the joint outputs τout :

fout = α1 fimpulse +α2 fposition, and then (3.3)

τout = JT fout . (3.4)

where

τout = the joint torques to be delivered,

JT = the transpose of the single leg Jacobian,

α1,α2 = hybrid weights,

fimpulse = foot force that satisfies the impulse controller, and

fposition = foot force that satisfies the position controller.

(3.5)
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After computing the output leg force, the measured impulse can be updated for use in the impulse

component of the HIP controller. This is done by

if contact, Imeasured[h+1] = Imeasured[h]+ fout∆t

else Imeasured[h+1] = Imeasured[h] (3.6)

where h is the index of the current control step. As shown in Fig. 3.3, the measured and desired

impulses are reset at the end of each stance phase.

The HIP controller is able to achieve ground contact at each step and is able to navigate

though some uneven terrain. However, the controller is very dependent on the force profile used.

Since exact force profile patterns cannot be generated for every possible scenario, approximate

force profile patterns have to be used. This may cause instability when a wrong force profile is

used. Even if a large number of force profiles for different terrains and gaits are provided, the

controller might still be ineffective to an unknown terrain.

3.4.3 Force Feedback Control

Instead of computing the force profile at each step, force feedback can be used by the

position controller to control the trajectory of the leg. This means instead of creating a particular

force, the position of the leg is changed based on the force being generated. In force feedback

control, the leg is depressed until the ground contact is detected by reading the foot forces. Once

ground contact occurs, the leg depression value is used as desired position throughout the stride

period of that step. Therefore, at each step the desired leg depression changes based on the terrain.

This makes the controller independent of the force profile pattern being used and is able to navigate
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more terrains, including unknown ones, using force feedback. The behavior of the force feedback

control can be shown in Fig. 3.4.

Direction of

Movement

Figure 3.4: Sensing uneven terrain using force feedback.

Direction of

Movement

(a): Walking down a step

(b): Walking up a step

Figure 3.5: Force feedback control: Effect on body height walking up and down a step.

Figure 3.4 shows the hexapod body walking on uneven terrain using the force feedback

controller. This, however, creates a problem when walking on a changing terrain like a slope or
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Direction of

Movement

(a): Walking down a slope

(b): Walking up a slope

Figure 3.6: Force feedback control: Effect on body height walking up and down a slope.

a series of steps. Since the legs constantly change their trajectory based on the ground contact

and due to the nature of local leg control, the overall body height of the hexapod changes with

respect to the terrain. However, the force feedback controller has no mechanism such that the

original walking height of the hexapod can be restored or maintained. This can be clearly seen in

Fig. 3.5. The figure shows the hexapod walking down and up a step. In subplot (a), the hexapod

leg reaches down to make ground contact and hold the body. Before the first tripod can complete

the step, the other tripod reaches down and makes ground contact. This means the body height

keeps increasing during the step and once the step is cleared, the hexapod will continue walking

with the same increased body height. In case of a series of steps, the body height of the hexapod

will continue to rise until the legs reach their physical limits. The opposite is true for the hexapod

going up a step. The body height will be decreased and it will stay decreased. While walking up
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a series of steps, the body height will continue to decrease until the body is being dragged on the

ground. The same thing happens when the hexapod goes down and up an incline (Fig. 3.6).

3.5 Summary

This chapter gave a brief description of some of the controllers that use foot forces in

conjunction with the position controller. Since ground reaction forces are dependent on the terrain

the robot is navigating, trying to produce a specific foot force on a leg can only be beneficial if

the ground reaction force patterns are known before walking. Using such a controller on unknown

terrains can make the system unstable. Force feedback control is a good idea for control since it can

potentially work on unknown terrains and widely used by legged animals. However, independent

terrain sensing by each leg can result in the height of the robot becoming dependent on the

terrain. Independent height control, similar to one seen in stick insects (Section 6.2.2), has to

be implemented. The Force Threshold-based Position (FTP) controller, described in Chapter 4,

combines force feedback with independent body control through individual legs to create a robust

walking controller able to navigate uneven terrains.
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CHAPTER 4: FORCE THRESHOLD-BASED POSITION (FTP) CONTROL1

4.1 Introduction

The Force Threshold-based Position (FTP) controller attempts to create necessary ground

reaction forces for each leg of the system such that the leg can propel and stabilize the body during

every step. This is done best when the leg achieves ground contact during each step regardless

of the terrain. However, as discussed in the previous chapter, trying to assign and achieve an

exact vertical force pattern for all possible scenarios during walking is nearly impossible. Also,

replicating one specific force pattern for all scenarios can lead the system to become unstable

in challenging cases. Therefore, the FTP controller tries to achieve at least a minimum force

magnitude at each step using specific force thresholds to control the position of each leg. This not

only provides a stable walking pattern on flat terrain but also works very well on irregular terrains.

4.2 Force Thresholds

Even though every animal generates foot forces relative to its body weight, the foot force

generated by each leg is different and dependent on the gait and number of legs on the ground.

Figure 4.1 shows a force template for the vertical ground reaction force for two steps. By assigning

force thresholds to the vertical ground reaction force template, we can distinguish the amount of

support provided by the leg based on the ground reaction force. A leg is described to be in full

1Portions of these results have been adapted from previously published publications {[42], [43], [44]}.
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support (FS) of the body when the leg is supporting a significant load. A leg is in no support (NS)

when small or no load is being supported, which will typically be perceived as a leg not in contact

with the ground. The leg is in the weak support (WS) phase when the leg is in contact with the

ground but not supporting much force. The low (FL) and high (FH) thresholds are used by the FTP

controller to distinguish these phases; and are hand tuned. Currently, no generalized procedure

has been developed to find optimum thresholds for different morphologies based just on their body

weight and walking gait.

0 0.5 1.0

R

L

Vertical Foot

Force

Time

Step

Cycle

Body

Weight

No Support

Weak Support

Full Support

No Support

Weak Support

Full Support

FL

FH

Figure 4.1: Vertical ground reaction force template along with force thresholds during a typical

running step. The vertical foot forces during walking have a much less predictable shape because of

the overlapping ground contacts and numerous stepping patterns achievable. Dashed line indicates

body weight. The black bar represents the stance period and white space the flight period. (Adapted

from [42])

For a walking behavior to work properly on uneven terrain, the trajectory of the leg should

be adjusted based on the terrain height. If the ground is lower than expected, the controller must

depress the foot to reach the ground and maintain the foot depression to support the body. If the

ground is higher than expected, the controller must attenuate the foot depression so as not to lift

the body higher than desired. The force thresholds can be used to decide if the foot should be
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elevated or depressed and at what rate based on the ground reaction forces as well as the current

foot position. Using this approach, the stance phase can be divided into a series of states that

dictate foot depression and elevation. Even though force thresholds are used, the controller tries to

achieve the level of support required by each leg and not the actual forces and, the FTP controller

therefore, is able to produce ground reaction forces dependent on the terrain.

4.3 Maintaining Body Height

As with stick insects, individual legs can be used to maintain the body height independently.

This means that each leg or a pair of legs should have a desired foot depression which, when

attained by all legs, would result in achieving the desired body height. Since for effective walking,

ground contact has to be made at each step; each leg has to first produce ground contact after

which based on the ground reaction forces the foot position can be either elevated or depressed to

effectively decrease or increase the body height respectively. The notion of the zero-force height

explained in Section 6.2.2 can now be replaced by preferred foot depression for an individual

leg resulting in similar behavior displayed by the stick insect. The preferred foot depression is

currently a user selected number not based on an optimal solution.

4.4 FTP States

The inputs to the FTP algorithm are the current desired foot depression and measured foot

force. The output is a desired depression or elevation rate, which may also be zero. The output can

be further categorized into either a fast or a slow rate, narrowing the output states into one of the

following five states; fast depress, fast elevate, slow depress, slow elevate and maintain position.

In addition to depressing and elevating the foot in response to force feedback, the FTP controller

attempts to stabilize the height of the body by moving the foot to a preferred foot depression that
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can be set by the operator. Loss of body support should be avoided during stance because it may

result in unwanted body tilt that is difficult to overcome. Foot depression and elevation is coupled

with foot force and body support as described below:

1. While a foot is on the ground, further depressing this foot with respect to the body temporar-

ily results in larger foot forces and greater support of the body. Depressing the foot too much

may tilt the body away from this leg and eventually cause the foot forces to decrease.

2. Elevating a foot that is in contact with the ground temporarily reduces foot forces and body

support, although continued elevation may cause the body to tilt toward this leg and result in

increased forces.

By example, if the foot depresses past the preferred level as it seeks the terrain, elevating

the foot back toward the preferred level immediately after contact may cause the leg to lose contact

with the ground and the body to stumble. Care must be taken to elevate the foot appropriately to

avoid this outcome.

The input space for the FTP algorithm is divided into four states, shown in Fig. 4.2. The FL

and FH thresholds correspond to the level of support currently provided by the leg (Fig. 4.1), and

the preferred foot depression, DPRE , is the level at which the body walks at a user-selected height.

If all stance legs achieve DPRE , the body will be level on the pitch and roll axes, as is true with

a simple position controller. The foot force generated by the leg at the previous step is compared

with thresholds and based on the current foot depression, the foot is either depressed or elevated.

The slow/fast foot elevation or depression is represented in terms of change from the current foot

position. The rates are ∆FD (fast depress), ∆SD (slow depress), and ∆SE (slow elevate). ∆FE (fast

elevate) is used during swing phase of walking and as the FTP controller is used in stance phase

only, this rate is not seen during the working of the FTP algorithm. The states shown in Fig. 4.2

are explained below:
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S1

FAST

DEPRESS

S2

MAINTAIN

DEPRESSION

S4

SLOW

DEPRESS

S3

SLOW

ELEVATE

VERTICAL

FOOT

FORCE (f )FH

DPRE

FL
NO

SUPPORT
WEAK

SUPPORT

FULL

SUPPORT

FOOT

DEPRESSION (d)

Figure 4.2: Force Threshold-based Position (FTP) controller states. During stance, the foot is

either commanded to depress further or elevate upwards based on the foot force feedback and

current foot depression. (Adapted from [42])

S1 The leg enters S1 at the start of the stance phase, and the foot is directed to fast depress toward

the terrain at a constant rate ∆FD until ground contact is made. If ground contact is lost at

any point during the stance phase, which is perceived by the foot force decreasing below FL,

the leg re-enters state S1 and is depressed rapidly in order to re-engage the terrain.

S2 In this state, the foot depression level is directed to remain unchanged because the foot has

made ground contact and is depressed further than preferred, but the leg is weakly supporting

the body. Elevating the foot toward the preferred level while only weakly supporting the

body may cause the leg to lift off the ground and the body to tilt inappropriately.

S3 When the leg is in full support of the body, the foot can be elevated slowly toward DPRE if

needed. The rate of elevation (∆SE) must be limited such that the algorithm can rapidly stop

this elevation when the foot force drops below FH and the leg is in danger of losing support

of the body.
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S4 In this state, the foot is depressed slowly toward DPRE at a constant rate ∆SD. If the leg is in

weak support, the depression should increase the foot force and result in greater support of

the body as desired.

The FTP states shown in Fig. 4.2 can also be briefly summarized below.

Table 4.1: Explanation of the FTP states.

State Condition Explanation

S1 f < FL
No ground contact

Depress foot at a high constant rate (∆FD)

S2

( f > FL) ∧ Foot too far depressed but not supporting body

( f < FH) ∧ Maintain foot depression

(d > DPRE)

S3
( f > FH) ∧ Foot too far depressed and fully supporting body

(d > DPRE) Elevate foot at a slow constant rate (∆SE)

S4
( f > FL) ∧ Foot too far elevated and supporting body

(d < DPRE) Depress foot at a slow constant rate (∆SD)

It should be noted that the FTP algorithm works best when transition from one state to

another occurs immediately after the foot force crosses the threshold. For example, if the leg in

fast depress is not able to react to the change in the force, the body will rise too high and cause

unwanted tilt. This requires the foot forces to be read very quickly. The local leg controller allows

for rapid responsiveness as the number of sensors it has to read and the number of motors to

communicate the desired position is smaller compared to a central controller. A central controller

has to read all sensors of all legs before it can communicate the desired to the motors.

The FTP states and the relationship between them can be further elaborated using a finite

state machine diagram shown in Fig. 4.3. At every stance phase, the leg enters the fast depress

state and based on the interaction of the leg with the terrain, the leg changes state. Please note that

even though the vertical foot force during state S1 can suddenly drop from being greater than FH to

being less than FL in a single time step, it is assumed that the force will decrease slowly causing the

state to go from S3 to S2 and then S1. Therefore, there is no transition shown between S3 and S1.
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Also, in state S2 the foot depression is maintained and not changed. Due to this, the state S2 can

transition either to S1 or S3 but not S4 since the leg can enter that state only if the foot depression

goes below the preferred foot depression DPRE .

S1

FAST

DEPRESS

S3

SLOW

ELEVATE

S2

MAINTAIN

DEPRESSION

S4

SLOW

DEPRESS

f < FL 

f < FL

f < FL
f > FL &

d > DPRE

f > FH

f > FL &

d < DPRE

FL < f < FH

f < FH

d < DPRE

FL < f < FH &

d > DPRE

f > FH &

d > DPRE

f > FL &

d < DPRE

f > FH &

d > DPRE

Figure 4.3: Finite state machine (FSM) diagram for the FTP controller states.

4.5 FTP Walking Behavior

Figure 4.4 shows the cyclic behavior used by the FTP algorithm for walking on flat terrain.

Part (a) of the figure shows the position of the foot with respect to the leg attachment to the body

in the X and Z plane. The Y plane is kept constant and chosen such that the workspace of the foot
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(b): Timing cycle in Z plane
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(a): Position of foot in X and Z plane
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Figure 4.4: Cyclic walking behavior using the FTP algorithm on flat terrain. (a) Position of foot

in the X and Z plane (foot position in Y plane is kept constant) during a step: The behavior is

governed by six position variables which determine the extreme positions of the foot in the X and

Z plane (Only five shown in figure). (b) Timing cycle in the Z plane: The FTP controller controls

the leg during the stance phase while the position controller swings the leg back to its original

position. (c) Timing cycle in the X plane: The movement in the X plane is completely controlled

by position control. DCLR is the preferred clearance while DREQ and DPRE are the required and

preferred depression in the Z axis. XAEP and XPEP are the anterior posterior extreme position in

the X axis. (Adapted from [42])
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is largest in the Z plane. Six extreme positions in the X and Z plane govern the position of the

foot during the walking step. The anterior extreme position (XAEP) and posterior extreme position

(XPEP) control the most anterior and posterior position in the X plane that can be reached by the leg

during walking. Since the position in the X plane is controlled by position control, the movement

between XAEP and XPEP is deterministic regardless of the terrain.

The foot position in the Z plane is commanded by the FTP controller during the stance

phase while position controller commands the foot position during the swing phase. The foot

position in the Z plane during swing phase changes from the position at the end of previous stance

phase dependent on the terrain height to a deterministic initial position before the start of the

next stance phase. The foot position during the stance phase is based on the terrain height and

the interaction of the foot during that phase. The four positions which govern the position in Z

plane are the preferred clearance DCLR, required depression DREQ, preferred depression DPRE , and

maximum depression DMAX (not shown in Fig. 4.4). The preferred depression DPRE has been

discussed in the previous sections while the preferred clearance DCLR is the position the foot has to

reach during the swing phase such that the leg can walk over obstacles. DCLR can be the maximum

upward position reachable by the leg configuration. If the terrain is flat, the position in the Z plane

would oscillate between DPRE and DCLR. The required depression DREQ is the foot position such

that the body is lifted slightly from the ground. This is done so that regardless of the terrain height,

the body is lifted slightly above the ground by all legs so that lower side of the body does not hit or

rub against the ground. During the swing phase, the position controller commands the foot position

to go to DCLR and then down to DREQ such that the stance phase begins with the foot at the required

depression DREQ. The maximum depression DMAX is the maximum depression reachable by the

leg configuration and forms an upper limit for the foot depression during the stance phase. If the

terrain is lower than the maximum DMAX , the leg stops depressing the foot further and maintains

that depression.
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(b): Timing cycle in the Z plane on a terrain lower than expected
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Figure 4.5: Cyclic walking behavior using the FTP algorithm on a terrain lower than expected. (a)

Position of foot in the Z plane (foot position in Y plane is kept constant) changes during a step (b)

Timing cycle in the Z plane. DCLR is the preferred clearance while DREQ and DPRE are the required

and preferred depression in the Z axis. XAEP and XPEP are the anterior posterior extreme position

in the X axis.

Part (b) in Fig. 4.4 shows the desired Z foot positions with respect to time while part (c)

shows the desired X foot positions with respect to time. Stance duty factor (0 <DS< 1) controls

the ratio of time between the stance and swing phase during a single step. Stance phase starts at

time step I and ends at II (swing phase goes from time step II to V and ends at I). Retraction duty
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factor (0 <DR< 1) controls the ratio of time between retract and protract phase during a single

step. Retract phase starts at time step I and ends at III (protract phase goes from time step III to

V and ends at I). DR is chosen to be greater than DS in order to delay protraction until the foot

has been elevated from the terrain. For the hexapod to walk in tripod gait, DR and DS have been

selected to be 0.8 and 0.7 respectively. The time duration for a single step is kept constant for all

legs. Thus, even though all the legs are independently controlled, starting the execution of the FTP

controller on the legs at the same time makes them synchronous with each other.

On flat terrains, the position plot is similar from one step to another and behaves almost as

a position controller. However, on uneven terrains, based on the force feedback, foot depression

changes from step to step in order to match the terrain. Figure 4.5 shows the cyclic behavior used

by the FTP algorithm for walking on a terrain lower than expected. As can be seen in Part (a) of

Fig. 4.5, the leg continues to do fast depress until the force feedback increases above the minimum

threshold and, in effect, makes ground contact. This changes the behavior for the remaining step.

Since the timing for the whole step is time controlled, the time steps (I to V ), except IV , occur

at the same time every step. The foot position in the Z plane depends on the terrain height and,

therefore, the time step (IV ) the foot reaches DCLR changes at each step. Figure 4.6 shows the

cyclic behavior used by the FTP algorithm for walking on a terrain higher than expected. The

behavior observed is similar to the one in Fig. 4.5. Please note that in Fig. 4.5 and Fig. 4.6, after

touchdown, based on the measured foot forces, the leg would be slow elevated or depressed to

reach the preferred depression DPRE . This behavior is not shown in Fig. 4.5 and Fig. 4.6 and can

be considered a simplified version of the walking behavior on uneven terrain.

4.6 Multiple Gaits

Even though the alternating tripod gait is the fastest hexapod gait [68], other gaits like the

wave and ripple gait offer more stability. For example, when the terrain is slippery, the wave and
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Figure 4.6: Cyclic walking behavior using the FTP algorithm on a terrain higher than expected.

(a) Position of foot in the Z plane (foot position in Y plane is kept constant) changes during a step

(b) Timing cycle in the Z plane. DCLR is the preferred clearance while DREQ and DPRE are the

required and preferred depression in the Z axis. XAEP and XPEP are the anterior posterior extreme

position in the X axis.

ripple gaits are more stable as the number of legs on the ground at any given time is higher, which

serves to increase the size of the support polygon formed by the feet. Figure 4.7 shows the timing

patterns of all the three gaits. Each gait still operates by alternating between the swing phase and

the stance phase. The difference between the different gaits is the relative phasing between the
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legs and the amount of time spent in the stance phase. In the alternating tripod gait, each tripod

starts their phases at the same time with a phase difference between them. In wave and ripple gait,

individual legs start their phases independent of each other which cause the time period for each

step to be increased. The time period for each time step (addition of the swing and stance time

period) for wave gait is 3 times more than the time step for a tripod gait while the time period for

the ripple gait is 1.5 times more than the tripod gait time period.

L3

L2

L1

R3

R2

R1

TRIPOD

GAIT

WAVE

GAIT

RIPPLE

GAIT

Figure 4.7: Timing plot for tripod, wave and ripple gaits. (Adapted from [69]).

4.6.1 Multiple Gaits Using FTP Control

As the modifications required for different gaits are in terms of phasing and time period,

wave and ripple gaits can be implemented using the FTP algorithm without any major modifi-

cations. Since the FTP algorithm is not dependent on the force profile pattern, the only change

needed is the high force threshold FH value. In the alternating tripod gait, the middle leg needs

to produce more force to lift the body up, but this is not the case for the other gaits. Since more

legs are on the ground at any given time compared to the tripod gait, the FH for the middle legs
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in wave and ripple gaits could be reduced by half. However, the high force threshold FH value for

the alternating tripod gait can also be used for the wave and ripple gaits without any change in the

walking behavior. So by changing the time period and individual leg phasing, multiple gaits can

be implemented using the FTP controller. Results are provided in Chapter 6.

4.6.2 Gait Change in FTP Control

Animals change their gait depending on the terrain, the walking speed as well as environ-

mental parameters. However, the stimulus for gait change during insect walking is not completely

understood. Some stimulus that produce behavioral transitions from one walking gait to another

have been found but the list is not yet complete. Transition steps taken in between two separate

walking behaviors have been found [70]. Such transition steps orchestrate the legs to move from

one walking behavior to the next without the loss of stability. However, the studies required to

understand every transition and stimulus that causes walking transitions are yet to be done. Also,

the dependency of the transition on the context of the environment makes this an open ended

question.

Currently, the transition between gaits using the FTP controller is not automatic but pre-

selected. The FTP controller also does not use a transition step which changes the walking behavior

from one to the other but simply starts a new step using defined state variables. The walking

behavior simply reads the necessary variables required for walking and completes the step with

the behavior implied by the variables. For example, after a completion of a step, if the variable

for time period is multiplied by 3 and the time period variables are set appropriately, the walking

behavior changes from tripod gait to wave gait. Since the FTP algorithm uses deltas to change the

position at each step, there is no loss of stability when changing the walking behavior. Also, no

specific transition step is implemented.
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4.7 Summary

The Force Threshold-based Position (FTP) controller is presented in this chapter. By

dividing the vertical ground reaction force profile based on the amount of support it provides,

the FTP controller is not dependent on any force profile patterns. Also, by trying to achieve the

level of support required by each leg, the FTP controller is able to produce ground reaction forces

dependent on the terrain. This is a great advantage because the FTP algorithm can walk on uneven

terrain producing the necessary ground reaction forces without having to know what kind of ground

forces are needed for that terrain or to store them.

The FTP controller is also able to maintain the body height by independently controlling

the leg length based on the force feedback. Due to this independent height control, the robot is

able to walk easily oven terrain changes without any loss of stability. Currently, the preferred foot

depression DPRE is user selected and is selected in such a way that the leg can step over or step

down over a wide range of terrain changes.

The next chapter describes the hexapod structure built in simulation and hardware and parts

needed to implement the FTP controller.
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CHAPTER 5: HEXAPOD STRUCTURE1

5.1 Introduction

The following sections describe the structure of the hexapod developed for testing the

Force Threshold-based Position (FTP) controller in simulation and hardware. The goals of the

leg design are three degrees of freedom per leg with the ability to sense ground force, or foot force,

continuously throughout the step for use by the FTP controller. Traditionally, foot force has been

difficult to measure rapidly and accurately. One strategy has been to measure the motor current

and use the torque constant to determine how much force is being generated. In addition to the

current measurements typically being very noisy signals, this torque constant is an idealized term

that does not truly model the motor torque, particularly when the motor is turning at high speed.

Other options are the use of sensors at the tip of the foot, but there are challenges associated with

this as well. This chapter describes the leg structure, force feedback assembly, and the hexapod

design. Information about the force feedback assembly and working is provided. Mechanical as

well as electrical assembly of the hexapod developed is provided.

5.2 Leg Structure

The hexapod leg is modeled similar to a stick insect and has three degrees of freedom on

each leg (Fig. 5.1). The three joints are modeled similar to the joints of the stick insect; T hC

1Portions of these results have been adapted from previously published publications {[42], [43], [44]}.
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Figure 5.1: Hexapod leg structure: Each leg has three actuators and is described by four link

lengths. (Adapted from [42])

(Thorax Coxa) joint, CTr (Coxa Trochanter) joint, and FTi (Femur Tibia) joint. Three joints (θ1,

θ2 and θ3) are used to control the position of the foot. The first or T hC joint θ1 controls the fore-

aft motion of the leg while the remaining two, CTr and FTi joints (θ2 and θ3), control the foot

elevation and depression. Leg links l2 and l3 form a rigid 90◦ angle between them. The dimensions

of the hexapod leg are given in further sections.

5.3 Force Sensing

One of the main criteria for the hexapod leg design is the need to accurately measure the

foot forces at a high rate. This is needed so that the FTP algorithm can respond quickly to the

change in terrain while achieving the maximum possible forward movement in a single stride. The

accuracy of the foot force data is crucial to the success of the algorithm. Inaccurate force reading

can lead to unpredictable leg behavior of the robot while slow reading of the force can lead to

changes in the overall body pitch and roll due to excessive foot depression by one or more legs of

the robot.
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5.3.1 Using Force Sensitive Resistor (FSR)

One of the ways force could be successfully read is by using a force sensing or force

sensitive resistor. A force sensitive resistor (FSR) is a material whose resistance changes when a

pressure or force is applied at its surface. This resistor could be applied to a DC voltage and the

value could be read using a data channel. Although the force value from the resistor could be read

at a high frequency, the accuracy of the force data depends on the position of the FSR on the leg. If

the FSR is positioned on the end effector of the leg, the value of the FSR depends on the angle of

foot touchdown. Also, friction has an effect on the FSR causing discrepancies in readings. Placing

one or more sensors in between joints or links makes the force data more reliable but causes a

lot of wear and tear on the sensor. Based on the configuration of the leg, multiple force sensors

are required to accurately measure the foot force for that leg. Noise in the readings also makes it

harder to use with the FTP algorithm. Using a software filter increases data reliability but reduces

the responsiveness to terrain changes. This kind of sensor setup is difficult to read and also difficult

to maintain.

5.3.2 Using a Separate Actuator as a Force Sensor

Some actuators in the market use a position controller with selectable gain to determine

the output torque of the actuator. The compliance of the actuator can be used to measure the

corresponding load by reading its position and determining the error. This can be achieved by

setting the proportional gain low, making the actuator compliant enough to deviate from the zero

position when a load is applied. These small position changes can be monitored to find the

corresponding load on the actuator. Since the output torque grows as the position deviates from the

zero position, we can make an approximate estimation of the force on the actuator. The actuators

from Dynamixel [71] use the combination of compliance margin and compliance slope values
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to determine the output torque and in effect, the compliance of the actuator. If the actuator can

be positioned on the hexapod leg such that the corresponding load is due to the foot forces, the

position error can be used to measure the foot forces.

A B C D

E

E

Goal Position

CCW

CCW

CW

CW

X-Axis

Position Error 

Y-Axis

Output Torque A: CW Compliance Slope
B: CW Compliance Margin

C: CCW Compliance Margin
D: CCW Compliance Slope
E: Punch

Max Torque

Max Torque

Figure 5.2: Actuator compliance: Actuator compliance governed by compliance slope and margin

in the clockwise (CW) and counter-clockwise (CCW) direction. (Adapted from [71]).

Figure 5.2 shows the compliant behavior of the Dynamixel actuators. The output torque of

the actuator around the zero position is controlled by the compliance margin and slope values. If

the compliance slope of the actuator is set high and the compliance margin is set to a small value,

the actuator can be compliant enough to move in clockwise (CW) and counter-clockwise (CCW)

directions. An approximate estimation of the force on the actuator can be made by reading the

position error.

A compliant joint is added to the hexapod leg structure to detect foot forces corresponding

to the leg. The compliant actuator (θc) is placed in between the T hC joint (θ1) and the CTr joint

(θ2) and is used to detect the foot force in the Z-direction. The position is based on the fact that the

CTr and FTi joints (θ2 and θ3) control the foot elevation and depression (Figure 5.1). Figure 5.3
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Hard stop

Zero
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Figure 5.3: Hexapod leg with a compliant actuator.

shows the actuator structure for a single leg. Since the compliant actuator is used to find foot

forces during foot touchdown, a hard stop has been placed such that the actuator does not move

past zero in the clockwise direction during flight. The compliant actuator is commanded to hold

the zero position. When the foot touches the ground, force due to the body weight of the hexapod

causes the compliant actuator to deviate from this position. Figure 5.4 shows this scenario in the

counter clockwise direction. The change in the actuator position can be read and ground contact

can be inferred. Please note that there is some compliance in all the T hC (θ1), CTr (θ2) and FTi

(θ3) joints but they are much stiffer than the compliant actuator (θc). However, individually or a

combination of those joints are not able to accurately predict the foot forces while maintaining the
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body weight during walking. An additional compliant actuator with a high compliance margin is

needed to sense the foot forces while walking upright on the ground.

Compliant

Actuator

(θc)

Abad (θ2)

Knee (θ3)

Zero

Position
Actual

Position

Ground Reaction

Force (GRF)

Swing (θ1)

Figure 5.4: Hexapod leg with a compliant actuator: Detecting foot forces. (Adapted from [42])

The relationship between compliance of the actuator and load could be evaluated by using a

weighing scale to note the load at the foot corresponding to the position deviation of the compliant

actuator. Figure 5.5 shows the load corresponding to the compliant actuator position. For this

experiment, one tripod was made to carry the weight of the hexapod and the foot depression

of each tripod leg was increased slowly. Additional weights were added to the hexapod to find

the load corresponding to the higher position deviations. Each experiment was done multiple

times and the mean load was calculated. The figure shows the mean and standard deviation of the

load corresponding to the compliant actuator position. The figure also shows the possible torque
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generated by the actuator at specific actuator positions based on the compliance margin and slope

limits set. As can be seen from the figure, the change in the actuator position has an almost linear

relationship to the load experienced by the leg and has a slope similar in magnitude to the slope of

the actuator torque based on the set compliance margin and slope limits. The compliant actuator

position can be used in the forward kinematic calculation of the desired joint angles from the

commanded foot depression level.

-5 0 5 10 15 20 25 30
-145

0

145

290

435

580

725

870

1015

1160

1305

1450

F
o
rc

e
 (

g
m

)

Compliant Actuator Position

 

 

-5 0 5 10 15 20 25 30
-5

0

5

10

15

20

25

30

35

40

45

50

%
 o

f 
M

a
x
 T

o
rq

u
e

Mean Foot Force

Goal Position

Compliance Margin

Hard Stop

Torque Limits

Figure 5.5: Load corresponding to a compliant actuator position. (Adapted from [42])

Even though reading the actuator position through a serial port is far slower than using

the force sensitive resistor (FSR) through an analog-to-digital channel, the reads can be done fast

enough for the hexapod to walk properly.
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5.4 Leg Structure with Force Sensing

Compliant

Actuator

(θc)

Abad (θ2)

Knee (θ3)

Swing (θ1)

l2

l1

l3

l4

l5 l6

Figure 5.6: Side view of the hexapod leg structure in the zero position. (Adapted from [42])

The whole structure of the hexapod leg along with the compliant actuator is shown in

Figure 5.6. Adding the compliant actuator increases the degrees of freedom on each leg to four. The

dimensions of the hexapod leg structure are given in Table 5.1. The compliant actuator position can

be used in the calculation of the end effector of the leg. As the compliant actuator position changes

due to foot touching the ground, the FTP controller can make sure the leg can hold the weight of

the body by taking the actuator position in to account. Based on the leg structure (Figure 5.6) and

link lengths (Table 5.1), each leg can achieve a foot clearance of 6 cms during the swing phase and

a maximum foot depression of 18 cms during stance phase.
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Table 5.1: Hexapod dimensions: HexaBull-1.

Product Centimeters

Body Length: Chassis 44.5

Body Length: Between T hC Joints (θ1) 52.5

Body Length: Total (Including Leg Stride) 64.5

Body Width: Chassis 7.9

Body Width: Between T hC Joints (θ1) 10.5

Body Width: Total (Including Contralateral Legs) 43.3

Body Depth 6.8

Leg: Link Length 1 (l1) 9.3

Leg: Link Length 2 (l2) 7.1

Leg: Link Length 3 (l3) 2.4

Leg: Link Length 4 (l4) 9.2

Leg: Link Length 5 (l5) 5.1

Leg: Link Length 6 (l6) 4.2

5.5 Experimental Hexapod: HexaBull-1

Figure 5.7 shows the experimental hexapod, HexaBull-1. The dimensions of the whole

hexapod system are given in Table 5.1. The T hC joint (θ1) is controlled using a Dynamixel RX-

28 (Robotis Inc.) [72] servo actuator, while the joints CTr (θ2), FTi (θ3) and the compliant joint

(θc) are controlled using a Dynamixel AX-18A (Robotis Inc.) [71] servo actuator. The Dynamixel

AX-18A actuators has a maximum holding torque of 18 kg.cm while the Dynamixel RX-28 has

a maximum holding torque of 37.7 kg.cm. The RX-28 uses the RS485 asynchronous serial while

the AX-18A communicates using the TTL half-duplex asynchronous serial communication. Infor-

mation about the actuators and their control can be found in the Appendix A.

The CM-700 control board [73] is used to control each contralateral pair of hexapod legs

through serial communication with each joint servo. The control board uses the AT Mega2561 8-bit

AVR RISC-based micro-controller running at 16MHz frequency and has 256Kb of flash program

memory. Three CM-700 boards are used to control the hexapod and are completely separate except

for the power supply. The same code is loaded in to three boards and as the boards are powered on,
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Figure 5.7: Experimental hexapod: HexaBull-1.

the connected legs are recognized by their motor id and the legs are controlled to move in sync and

no data communication is needed for smooth walking. Stable walking behavior was implemented

on this experimental hexapod over a wide range of frequencies from 20 Hz to 80 Hz. The normal

controller frequency used is 40 Hz for most of the experiments on this experimental hexapod.

Information about the control board and working can be found in Table A.4.

Figure 5.8 shows the wiring between all the components in the experimental hexapod,

HexaBull-1. Since the Dynamixel AX-18A actuator working is limited to 12 V while the Dy-

namixel RX-28 is able to produce the largest torque when connected to 16 V , two separate batteries

are required by the hexapod for operation. The 11.1 V battery powers the Dynamixel AX-18A

actuators while the 14.8 V battery powers the CM-700 which, in turn, powers the Dynamixel RX-

28. The FTP algorithm sends the desired position to the connected motors and also reads the

compliant actuator position to determine foot forces. Please note that for experimental results the

position of other actuators are also read but those positions are not required for the operation of the

FTP algorithm. The experimental hexapod, HexaBull-1, weighs a total of 2.7 kg without onboard
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Figure 5.8: Experimental hexapod HexaBull-1 wiring.
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power and 3.4 kg with the two batteries. Motor IDs are also displayed in Fig. 5.8. The motor IDs

for the compliant actuator are from 19−24.

5.6 Hexapod in Simulation

Figure 5.9: Hexapod in simulation negotiating an obstacle.

Simulation of the FTP algorithm (Fig. 5.9) is done using the RobotBuilder simulation

environment, which is built upon the DynaMechs [74] software package. System losses are

modeled as damping in the compliant ground. Ground spring and damping coefficients are taken

as 75 kN/m and 2 kN/m/s respectively. Ground static and kinetic friction coefficients are 0.75

and 0.6 respectively, matching the properties of rubber on concrete. Each leg link is modeled

as a 0.1 kg slim rod with geometrically-centered mass. Leg mass combined to make up 59% of

the complete system mass, each leg making up approximately 9.8%. The simulated hexapod is

modeled similarly to the experimental hexapod, however no compliant actuator is simulated. Joint

torques multiplied through a Jacobian are used to compute the foot forces for each leg.
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5.7 Experimental Hexapod: HexaBull-2

Due to the placement of the compliant force sensor actuator (θc) in between the T hC

joint (θ1) and the CTr joint (θ2), the arm length of the hexapod leg in the experimental hexapod

HexaBull-1 is high. This requires more torque to be produced by the leg actuators to hold the body

at a specific height. This limits the stride area the leg can move during a walking step while still

lifting the body off the ground. This also causes the body to sag and the body height to decrease

during each step. The resulting walking behavior causes the maintenance of body height to be

very difficult and requires a high slow elevate rate (∆SE). Also, due to the mismatch of voltage

between the two Dynamixel actuators, two batteries are required which increases the body weight

and exacerbates the problem of maintaining body height.

Dynamixel AX-18A actuators have a coarse resolution in terms of rotation angle and using

an AX-18A as a compliant force sensor actuator causes read errors which leads to some unintended

body pitches and somewhat unstable walking behavior. Also, using the compliant actuator position

in the calculation of the foot position of the leg can lead to some jagged walking behavior. If the

compliant actuator position is not used during the calculation of foot position, the leg tends to splay

during walking which causes the body to sag further and requires a more higher slow elevate rate

(∆SE) to maintain a specific body height.

To solve the above problems, a newer version of the experimental hexapod has been devel-

oped. The Dynamixel AX-18A actuators were replaced by Dynamixel MX-28T (Robotis Inc.) [75]

actuators. The Dynamixel MX-28T actuators have a maximum holding torque of 31.6 kg.cm

(compared to 18 kg.cm for Dynamixel AX-18A) and resolution of 0.088◦ (compared to 0.29◦

for Dynamixel AX-18A). The MX-28T also uses a contact-less magnetic encoder instead of a

potentiometer. This will provide more accurate readings without deterioration over time. The

force sensing mechanism was removed from the hexapod leg and moved to the hip in the hexapod
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Figure 5.10: HexaBull-2 leg structure.
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Figure 5.11: SolidWorks model of the HexaBull-2.

body. Figure 5.10 shows the newer version of the hexapod leg. As can be seen in the figure, the

hexapod leg (similar to one shown in Figure 5.1) is mounted in between a movable hinge and the

compliant actuator. This makes the hexapod leg assembly movable and the compliant actuator can

be used to read the position error. As with the last version of the hexapod, a hard stop stops the

leg assembly to move below the zero position and the compliant actuator is commanded to hold

the zero position. During touchdown, force due to the body weight of the hexapod causes the leg

assembly to move upwards causing the compliant actuator to deviate from the zero position.

Figure 5.11 shows the SolidWorks model for the new experimental hexapod while Fig. 5.12

shows the experimental hexapod hardware, HexaBull-2. The dimensions of the whole hexapod

system are given in Table 5.2. Since the compliant force sensor actuator assembly is moved inside

the hexapod body, the arm length of the hexapod is reduced. This reduction of the arm length and

the increased holding torque for the MX-28T actuators, the HexaBull-2 is able to hold the body
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Figure 5.12: Experimental hexapod: HexaBull-2.

Table 5.2: Hexapod dimensions: HexaBull-2.

Product Centimeters

Body Length: Chassis 52.0

Body Length: Total (Including Leg Stride) 62.0

Body Width: Upper Chassis 6.9

Body Width: Lower Chassis 10.9

Body Width: Between T hC Joints (θ1) 10.4

Body Width: Total (Including Contralateral Legs) 35.4

Body Depth 6.8

Body Depth: With Battery On Top 10.0

Leg: Link Length 1 (l1) 5.1

Leg: Link Length 2 (l2) 7.4

Leg: Link Length 3 (l3) 2.5

Leg: Link Length 4 (l4) 11.1

and increase the stride length of the leg compared to HexaBull-1. Due to the increased resolution

of the MX-28T actuator position, the compliant actuator can be made much stiffer compared to

the AX-18A counterpart while still being able to detect ground contact and measure foot forces.

Due to this, the MX-28T compliant actuator is able to function with a small angle error and can

produce a stable walking behavior. And this can be done without using the compliant actuator

position during calculation of foot position.
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The MX-28T actuators are heavier than the AX-18A counterparts and increase the hexapod

body weight. However, as the MX-28T operates at the same voltage levels as the RX-28, only one

battery can be used for walking which balances the effect of the heavier actuator. More information

about the MX-28T actuator can be found in the Table A.3.

Figure 5.13: Remote control (Futaba T 8FG Super) used to control HexaBull-2.

To increase the functionality of HexaBull-2, a wireless remote was added to the configura-

tion and is used to send commands to the hexapod. The Futaba T 8FG Super 14 channel 2.4 GHz

remote system (Fig. 5.13) along with the Futaba R6208SB 2.4 GHz 8/18 channel receiver is used

for that purpose. The wireless receiver is connected to another CM-700 board which constantly

reads the remote buttons and sends the commands to the three CM-700 boards running the FTP

algorithm when the input on the remote is changed and thus, limiting the communication.

Figure 5.14 shows the wiring between all the components in the experimental hexapod,

HexaBull-2. Since both MX-28T and RX-28 operate at the same voltage levels, only one type of

battery is used to power the hexapod. One or more batteries could be added in series for walking.
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Figure 5.14: Experimental hexapod HexaBull-2 wiring.
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Since adding more batteries add more weight to the hexapod, testing on the HexaBull-2 is done

using only one battery. The experimental hexapod, HexaBull-2, weighs a total of 4.3 kg without

onboard power and 4.7 kg with a single battery. Motor IDs are also displayed in Fig. 5.8. The

figure also shows the fourth board used for communication. This board is connected to a wireless

receiver which receives the commands from the remote control in 8-bit packets.

5.8 Summary

This chapter provided a detailed description of the hexapod built for implementing and

testing the FTP algorithm. The experimental hexapod uses a novel method to record the foot forces

by using a compliant actuator. The chapter gives details of the two versions of the experimental

hexapods that have been used with this research. The next chapter provides all the experiments

performed in simulation and hardware to test the algorithm.

63



www.manaraa.com

CHAPTER 6: WALKING ANALYSIS1

6.1 Introduction

Since the FTP controller is a local-leg controller operating independently on the six legs

of the hexapod, rigorous testing is required to know the effect of the algorithm on the body of the

hexapod. Testing is required to check if the legs working individually can maintain body pitch and

height while walking on uneven terrain. Also, the effect of each of the ∆ rates (∆FD, ∆SD, and

∆SE) on the walking behavior has to be tested. For the FTP controller to work properly, the force

thresholds have to be set for each to provide appropriate support to the body. These thresholds

have to be tested to find out the ones for each pair of contralateral legs that work on every terrain.

The following sections describe the results obtained from both simulation and hardware.

6.2 Simulation Results

Simulation of the FTP algorithm was done to analyze the algorithm and fix any errors.

The foot forces are calculated using the Jacobian and the joint torques. Initially, contact points

from the simulation environment were used. Since contact points which provide information about

collision, force etc. about a particular point, contact points added to the foot were used to make the

simulation more robust. Later, after much testing of the force feedback, the contact points were

removed. The following sections describe some of the experiments performed in simulation.

1Portions of these results have been adapted from previously published publications {[42], [43], [62]}.
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6.2.1 Testing Terrains

Different simulation environments were created for testing the algorithm. Terrain A con-

tains a gap of height 6 cm (first subplot of Fig. 6.3). The height of the terrain returns to normal

after the gap. All the legs of the hexapod have to negotiate the gap. Terrain B contains a 6 cm

obstacle (Fig. 5.9). The width of obstacle (or gap) in Terrain B (or A) is 17 cm such that only one

pair of contralateral legs are on the obstacle. Terrain C contains a step of size 6 cm which decreases

the height of the terrain and the terrain remains at that height (third subplot of Fig. 6.3). Terrain D

contains a step of size 6 cm which raises the height of the terrain. Terrain E is a randomly generated

terrain and consists of square tiles of random elevation with a normal distribution centered at 0 cm

with a deviation of ±6 cm. Terrains F and G are terrains with a smooth incline going down and up

respectively with a slope of 15◦. Terrains H and I are terrains with series of steps going down and

up respectively (Fig. 6.8). The steps are arranged such that the overall angle of the terrain is same

as the Terrains F and G with a slope of 15◦. For Terrains F to I, a flat platform is added at the start

and the end before the incline (and steps) so that the hexapod can transition between the terrains.

Also, for Terrains F to I, multiple similar terrains were created for various levels of slopes starting

from 2.5◦ to 30◦.

6.2.2 Effects on Body Height

Figure 6.1 shows the body position and angles of the hexapod as it walks on a flat terrain

using the alternating tripod gait. The bottom of first subplot shows the stepping pattern for both

left and right tripods of the hexapod. The black bar represents the stance period. The upper dashed

line represents the stepping pattern for the left tripod while the lower one represents the right. The

figure shows three completed steps taken by the legs of the right tripod. The left tripod starts in

mid stance phase and only provides support and no forward thrust till the end of the phase (1 sec
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Figure 6.1: Body position and angles of the hexapod as it walks on a flat terrain using the

alternating tripod gait in simulation.

mark). As can be seen in the figure, the hexapod is able to achieve forward movement equal to the

body length (Table 5.1) at the end of two completed steps by the right and left tripod (5 sec mark).

The second subplot shows the body angles (pitch, roll, and yaw). The hexapod body is very stable

when walking on a flat terrain.

Figure 6.2 shows the body position and angles of the hexapod as it walks on a Terrain E

using the alternating tripod gait. The forward movement achieved by the hexapod is dependent on

the terrain. For example, due to a step down on the terrain (3 sec mark), the leg requires more time

for ground contact and is not able to move the body forward as much compared to a regular step.

The body angles (pitch, roll, and yaw) are also dependent on the terrain.
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Figure 6.2: Body position and angles of the hexapod as it walks on randomly generated uneven

terrain using the alternating tripod gait in simulation.

Figure 6.3 shows the body height of the hexapod walking over Terrains A through D in

simulation using the alternating tripod gait. The body height is measured from the geometric center

of the hexapod to the terrain. The bottom of each subplot also shows the stepping pattern for both

left and right tripods of the hexapod. In the first two subplots, the body height of the hexapod

remains fairly stable as each set of contralateral legs passes over the gap or the obstacle. In the

latter two subplots, once the hexapod goes over the step up or down, each leg works toward the

preferred foot depression DPRE . After several steps, the body height returns to its original walking

height with respect to the ground. This is the benefit of FTP algorithm continuing to run during

the stance phase. If the foot depression remains constant after ground contact (Force Feedback

Control in Section 3.4.3), the body height would not return to normal.
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Figure 6.3: Body height of the hexapod walking on different terrains using the alternating tripod

gait in simulation. (Adapted from [42])

The rate of slow depression ∆SD and slow elevation ∆SE dictates the number of steps needed

by the hexapod to reach DPRE which, in effect, controls the body height. The alternating tripod gait

was used by the hexapod in the remaining experiments as well. The ∆SD rate for this experiment

was 0.01 ∗∆FD while the ∆SE was 0.015 ∗∆FD where the ∆FD is 0.4 mm per control step. The

control step in simulation is 1 ms (frequency 1 KHz). The same rates have been used for other

simulation experiments unless stated.
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Figure 6.4: Walking over an obstacle: Foot depression and foot force of the front right leg of the

hexapod as it passes over an obstacle using the alternating tripod gait in simulation.

Figure 6.4 shows the foot depression and foot force of the front right leg and body height

of the hexapod as it walks on Terrain B in simulation. The body height is measured from the

geometric center of the hexapod to the terrain. The figure shows three steps taken by the front right

leg before, during and after the obstacle. The first and the third steps are on the same height of the

terrain. In each of the three steps, the leg enters the S1 state and depresses the foot at a constant

rate (∆FD). Around 3 sec, when the leg contacts the ground early, the leg enters the S4 state and

depresses the foot using ∆SD. The foot depression does not reach DPRE but increases the body

height slightly. As the front right leg lifts the body (state S4), the middle left leg (not shown in

figure) loses ground contact. Due to this, the middle left leg enters the S1 state again to depress

the foot and regain ground contact. At the next step, the front right leg returns to normal cyclic
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pattern. This behavior can be verified using the FTP controller states in Fig. 4.2. Please note that

the terrain in the third subplot of the Fig. 6.4 does not match the stance phase of the leg in the first

subplot. This is because the front leg is further away from the hexapod body at the end of the flight

phase.
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Figure 6.5: Walking over a gap: Foot depression and foot force of the front right leg of the hexapod

as it passes over a gap using the alternating tripod gait in simulation.

Figure 6.5 shows the foot depression and foot force of the front right leg and body height

of the hexapod as it walks on Terrain A in simulation. The first step is similar to the first step in

Fig. 6.4. However, when the leg tries to reach for the ground around the 3 sec mark, the leg is

unable to do so and continues to depress the foot at a constant rate (∆FD). After ground contact,

the leg enters the S3 state and elevates the foot using ∆SE . The foot depression does not reach DPRE
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but decreases the body height slightly. At the next step, the front right leg returns to normal cyclic

pattern.
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Figure 6.6: Walking up a step: Foot depression and foot force of the front right leg with body

height as the hexapod walks up a step in simulation. (Adapted from [42])

Figure 6.6 shows the foot depression and foot force of the front right leg with body height

as the hexapod walks on Terrain D in simulation. At each step, the leg enters the S1 state and

depresses the foot at a constant rate (∆FD) until the foot touches down. Around 3 sec, the leg

contacts the ground early than expected and enters the S4 state to slowly depress the foot. The foot

depression does not reach DPRE but lifts the body. The same happens during step 3, 4 and 5 and

the foot depression increases at each step until it reaches DPRE and the body height reaches back

to its original walking height. After step 5, the front right leg returns to normal cyclic pattern and

the body height remains consistent as it walks over the flat terrain.
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Figure 6.7: Walking down a step: Foot depression and foot force of the front right leg with body

height as the hexapod walks down a step in simulation. (Adapted from [42])

Figure 6.7 shows the foot depression and foot force of the front right leg with body height

as the hexapod walks on Terrain C in simulation. As the hexapod walks down the step, each leg

achieves ground contact using ∆FD. Similar to Fig. 6.6, the leg length works toward the preferred

foot depression DPRE which brings the body back to its original walking height. The Figs. 6.6

and 6.7 shows how the states S3 and S4 help the hexapod regain the preferred foot depression

DPRE . The hexapod regains the preferred foot depression DPRE after three steps in these figures.

Figure 6.8 shows the hexapod in simulation walking over a series of steps going up (Terrain

I). Figure 6.9 shows the body height (relative to the ground height) of the hexapod walking over

Terrains H and I in simulation using the alternating tripod gait. As can be seen in the figure, the
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Figure 6.8: Hexapod in simulation walking on a series of steps.
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Figure 6.9: Body height of the hexapod walking on a sequence of steps using the alternating tripod

gait in simulation.
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body height remains close to the actual terrain even when some slips are involved (around 20.5 sec

mark in the bottom subplot). Same ∆ rates described previously were used for this experiment.
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Figure 6.10: Body height of the hexapod walking on a incline using the alternating tripod gait in

simulation.

Figure 6.10 shows the body height (relative to the ground height) of the hexapod walking

over Terrains F and G in simulation using the alternating tripod gait. In both the subplots, the body

height of the hexapod remains fairly stable as it walks down and up the slope. One thing to note

is that the body height, even though looks smooth, is not maintained as the hexapod walks up the

incline (Terrain G). The body height continues to decrease even though the slow depress rate ∆SD

is the same in Fig. 6.9 and 6.10. Even though the Terrain I has greater change in terrain height

due to a step compared to Terrain G, the body height remains closer to the desired in Terrain I

74



www.manaraa.com

0 5 10 15 20 25 30
0

2

4

6

8

10

12

 

 

Step Down Terrain

Slope Down Terrain

0 5 10 15 20 25 30
0

2

4

6

8

10

12

Time (sec)

B
o
d
y
 H

e
ig

h
t 
(c

m
)

 

 

Step Up Terrain

Slope Up Terrain

Figure 6.11: Comparison between the absolute body height of the hexapod as the hexapod walks

up and down a terrain with steps and an incline.

than in Terrain G. The difference in walking can be more clearly seen in Fig. 6.11 which shows

the actual body height of the hexapod. The spikes in the body height when going down or up a

terrain with steps are due to the sudden change in terrain height due to the steps. The body height

of the hexapod is fairly similar when going down a slope. However, when walking on Terrain I,

the hexapod is able to recover due to the presence of flat areas in the terrain which is not the case

in Terrain G. A leg walking on Terrain I spends more time in the fast depress mode and is able

to maintain the body height. This means that, while walking on Terrain G with the same slope as

Terrain I, the slow depress rate ∆SD needs to be higher for the hexapod. This can be verified in

Section 6.2.4.
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6.2.3 Comparison with Position Controller
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Figure 6.12: Comparison between the FTP controller and a position controller walking over a

randomly generated uneven terrain. (Adapted from [43])

Figure 6.12 shows the comparison between the FTP controller and a position controller

as the hexapod walks on a random built Terrain E. Although other algorithms exist for legged

locomotion on irregular terrain, a pure position control algorithm is the only control algorithm

known to the author which does not require 1) vestibular sensing of body state, 2) terrain sensing, or

3) interleg cooperation, and therefore is the only appropriate comparison for the FTP controller at

the moment. The figure shows the displacement of the hexapod in terms of body length (Table 5.1).

After some steps, the hexapod under position control arrives at a location in which the feet do not
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reach the terrain and results in sluggish motion. The FTP controller, however, constantly seeks the

ground resulting in forward motion at each step.
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Figure 6.13: Timing comparison between the FTP controller and a position controller for a leg to

touch the ground at different depths. Position control of the hexapod leg results in terrain misses

after a certain depth of ground depression while the FTP control of the hexapod leg forces the foot

to engage the ground. (Adapted from [62])

Figure 6.13 shows the timing comparison between the FTP controller and a position con-

troller. The figure shows the time taken by the foot to touch the ground at different depths. After a

certain depth of the ground depression, the leg using feed-forward position controller is unable to

touch the ground. Also, when the ground is a little lower than expected, the time taken to touch the

ground increases and the leg is not able to produce the force needed for a proper step. On the other
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side, the FTP controller creates sufficient vertical force to reach the ground and produce enough

force for forward motion.

6.2.4 Changing Elevate and Depress Rates
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Figure 6.14: Effect of slow foot depression: Body height of the hexapod as it walks up a step using

different ∆SD in simulation. The figure shows the time taken by the hexapod to regain the desired

body height. (Adapted from [42])

Figure 6.14 shows the body height of the hexapod as it walks on Terrain D in simulation

using multiple slow depression (∆SD) rates (State S4 in Fig. 4.2). As can been seen, the time (or

number of steps) for the body height to return to the original height depends on the rate. The ∆SD =
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0.010 ∗∆FD works very well for the simulated terrains described. As the step size is increased,

higher rates are needed for the body height to return to normal in a reasonable number of steps.
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Figure 6.15: Effect of slow foot elevation: Body height of the hexapod as it walks down a step

using different ∆SE in simulation. The figure shows the time taken by the hexapod to regain the

desired body height.

Figure 6.15 shows the body height of the hexapod as it walks on Terrain C in simulation

using multiple slow elevate (∆SE) rates (State S3 in Fig. 4.2). Similar to Fig. 6.14, the time (or

number of steps) for the body height to return to the original height depends on the rate. The

∆SE = 0.015∗∆FD works very well for the terrains described. As the step size is increased, higher

rates are needed for the body height to return to normal in a reasonable number of steps.

The Fig. 6.14 and 6.15 show the effect of using different ∆ rates when transitioning from

one surface to the other. The body height has to be regained by the hexapod quickly after the
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transition but the body height has to be maintained when the terrain is changing continuously.

Figure 6.16 shows the body height of the hexapod as it walks up and down a continuous incline

(Terrain F and G). As can be seen from the figure, any ∆SE greater than or equal to 0.010∗∆FD is

fairly good for maintaining the body height, while any ∆SD greater than or equal to 0.025 ∗∆FD.

As can be seen in the figure, ∆SD = 0.020 ∗∆FD used in Fig. 6.10 is not enough to maintain the

body height.
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Figure 6.16: Effect of slow foot depression/elevation: Body height of the hexapod as it walks down

and up a slope using different ∆SE and ∆SD in simulation.

Figure 6.17 shows the body height of the hexapod as it walks up and down continuous steps

(Terrain H and I). Even though most of the ∆ rates are acceptable for walking, ∆SD = 0.020∗∆FD

is not the optimal solution. Thus, ∆ rates describe before (∆SE ≥ 0.010∗∆FD and ∆SD ≥ 0.025∗

∆FD) can be used as the minimum rates that could be used for walking.
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Figure 6.17: Effect of slow foot depression/elevation: Body height of the hexapod as it climbs

down and up steps using different ∆SE and ∆SD in simulation.

6.2.5 Relationship between Delta Rates and Terrain

One way to study the impact of the ∆ rates on the walking behavior of the hexapod is by

checking the stability of the body while walking and whether or not, the required parameters were

met. For a hexapod to walk properly, the body has to be lifted above the ground at all times and

have some forward motion at each step so as not to get stuck at any terrains. Also, since the input

for the FTP algorithm is the preferred foot depression DPRE , which is based on the zero-force

height in a stick insect, the body height could also be checked to see if the individual legs are able

to achieve the desired body height irrespective of the terrain.
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Figure 6.18: Relationship between terrain slope and ∆SE : Percentage of the experimental run the

body height is within 5% error margin of the actual body height while walking down an incline

when the slope of the incline and ∆SE rate are changed.

Since the reason for the choice of the zero-force height in a stick insect is not known, the

FTP algorithm can, therefore, be judged only based on how close the body height it maintains

to the desired body height while walking on different terrains. The FTP algorithm was run in

simulation on Terrains F and G with varying incline angles and with varying ∆ rates to check how

close the algorithm maintained the body height on different terrains and also to find if there is a

specific relation that could be found in between the terrain and the ∆ rates such that the walking

could be optimized for different terrains using different ∆ rates for different terrains.

In each experiment, the body height was recorded and compared with the desired body

height. If the body height was within 5% of the desired body height during most of the walking run

(for example 90% of the test run), the particular ∆ rates could be called a good fit for that particular

terrain. The concept of body height with an error percentage (of the desired body height) and
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Figure 6.19: Relationship between terrain slope and ∆SE : Percentage of the experimental run the

body height is within 25% error margin of the actual body height while walking down an incline

when the slope of the incline and ∆SE rate are changed.

time that body height is maintained (percentage of run) is used for these experiments because the

Terrains F and G have plane transitions in the start and end of the terrain which cause some body

height deviation. Also, when walking on uneven platform the body cannot be exactly maintained.

When walking up or down a step or slope there is a possibility that the body hits the ground.

When the body hits the ground, the test results are not included. Also, when the hexapod is not

able to achieve the goal of finishing the walking experiment either due to toppling or slipping,

those results were also not included.

Figure 6.18 shows the percentage of the experimental run the body height remains with the

5% error margin of the actual body height while walking down an incline with different slopes and

∆SE rate are changed. As can be seen from the figure, a ∆SE rate of zero (Force Feedback Control

in Section 3.4.3) is never able to achieve the desired height. As the ∆SE rate is increased the body
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Figure 6.20: Relationship between terrain slope and ∆SD: Percentage of the experimental run the

body height is within 5% error margin of the actual body height while walking up an incline when

the slope of the incline and ∆SD rate are changed.

height is closer to the desired more percentage of the time. Looking at the graph, one can say that

∆SE < 0.020 ∗∆FD will not result in a smooth walking behavior. The figure also shows that for

higher inclines increasing the ∆SE does not make the body height stable.

Figure 6.19 shows the percentage of the experimental run the body height remains with the

25% error margin of the actual body height while walking down an incline with different slopes

and different ∆SE rate are changed. Figure 6.19 confirms the notion that ∆SE ≥ 0.020 ∗∆FD is

needed when walking down an incline such that the legs are able to lift the body and maintain the

body height during the slope and terrain transitions.

Figure 6.20 shows the percentage of the experimental run the body height remains with the

5% error margin of the actual body height while walking down an incline with different slopes

and different ∆SD rate are changed. The behavior is similar to the Fig. 6.18. Please note that the
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Figure 6.21: Relationship between terrain slope and ∆SD: Percentage of the experimental run the

body height is within 25% error margin of the actual body height while walking up an incline when

the slope of the incline and ∆SD rate are changed.

figure is reversed compared to Fig. 6.18. Also, note that even if the ∆SD is zero (position control

with ground sensing only) the body height is close to the desired some of the time unlike Fig. 6.18.

In Fig. 6.20, the hexapod is not able to complete the terrain walking irrespective of the ∆SD rate

except in the case of zero where the hexapod completes the test but is not able to maintain the

desired body height for most of the experiment.

Figure 6.21 shows the percentage of the experimental run the body height remains with the

25% error margin of the actual body height while walking down an incline with different slopes

and different ∆SD rate are changed. By evaluating the Fig. 6.20 and 6.21, one can conclude that

when ∆SD ≥ 0.015∗∆FD the hexapod is able to maintain the body height to a desired level while

walking up an incline with slopes between 0◦ and 15◦.
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6.3 Hardware Results

Following sections provide the data results from testing the FTP algorithm on the exper-

imental hexapods, HexaBull-1 and HexaBull-2. As explained in the previous chapter, the FTP

algorithm running on three CM-700 boards produce the walking behavior in the hexapod robot.

6.3.1 Testing Terrains

Testing environments described in Section 6.2.1 for testing the simulation code were recre-

ated using wooden planks and blocks. Terrains A to E were created to test the hardware platform.

Terrains A to D were built with obstacle and steps of height 6.35 cm and gaps of height 10.16 cm.

The randomly generated Terrain E consisted of square blocks of sizes 3.8 cm, 7.6 cm, 11.4 cm, and

15.2 cm randomly placed on the ground. Wooden planks and beams of width of multiples of 1.5 in

were used to create the terrains.

6.3.2 Effects on Body Pitch

Figure 6.22 shows the foot depression, the compliant actuator position of the front right leg

and the body pitch as the experimental hexapod, HexaBull-1, walks on Terrain C with a step of

height 10.16 cm. The body pitch of the hexapod is found using a SCA121T dual axis inclinometer

which is configured to record the body pitch of the hexapod. The inclinometer data is not used

by the FTP algorithm. The first step taken by the leg is the down the step. The leg enters the S1

state and depresses the foot at a constant rate (∆FD). After foot touchdown, the leg enters the S3

state and elevates the foot using ∆SE . This happens for another step as the hexapod walks down the

step. After some steps, the body height and body pitch of the hexapod reaches back to the original

level. As can be seen in Fig. 6.22, the compliant actuator position has a very similar shape when
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Figure 6.22: Walking down a step: Foot depression and compliant actuator position of the front

right leg along with the body pitch as the experimental hexapod, HexaBull-1, walks down a step.

(Adapted from [42])

compared with the foot forces in simulation (Fig. 6.7) validating the use of a compliant actuator

for recording foot forces. The ∆SD rate for this experiment was 0.08 ∗∆FD while the ∆SE was

0.03∗∆FD where the ∆FD is 1 cm per control step. The control step on the experimental hardware

is 25 ms (frequency 40 Hz). The same rates have been used for other hardware experiments for

HexaBull-1 unless stated.

Figure 6.23 shows the foot depression, the compliant actuator position of the front right leg

and the body pitch as the experimental hexapod walks on Terrain D with a step of height 6.35 cm.

The leg takes two steps before the leg reaches the step on the terrain. The body pitch of the hexapod

reaches back to the same level after several steps.
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Figure 6.23: Walking up a step: Foot depression and compliant actuator position of the front right

leg along with the body pitch as the experimental hexapod, HexaBull-1, walks up a step. (Adapted

from [42])

Comparing Fig. 6.23 with Fig. 6.6 and 6.7, it can be seen that the ∆ values used in simula-

tion are much different than the ones used with the experimental hexapod, HexaBull-1; especially

∆SD. The reasons for higher ∆ values is slippage and body sag. As explained in Section 5.7, a

higher ∆SD is needed to lift the body higher after touchdown to compensate for this slippage and

to increase the overall body height. This can be clearly observed in Fig. 6.23. After the body pitch

returns to normal on completing the step, the hexapod leg touches down earlier than expected in

the next few steps. So larger ∆SD is required for the experimental hexapod HexaBull-1 to maintain

its body height.
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6.3.3 Comparison with Position Controller

Figure 6.24: Stuck hexapod: Screenshots of the experimental hexapod, HexaBull-1, as it walks

over a gap in the terrain using the position controller.

To compare the working of the FTP controller with the position controller, the experimental

hexapod, HexaBull-1, was tested to go over a gap in the terrain. The behavior of the hexapod in

position controller and the FTP controller was recorded. The gap in the terrain was around 7.6 cm.

Figure 6.24 shows screenshots of the experimental hexapod walking over the gap in the

terrain during one of the tests while using the position controller. Since the foot depression of

every leg during the walk does not go past the desired height, the front body of the hexapod start

to pitch down as the front legs step off the ledge (seen in Fig. 6.24 (II) and (III)). Therefore when

the hexapod has to go over the step, the front part of the hexapod body gets stuck (seen in Fig. 6.24
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Figure 6.25: Missed ground contacts: Screenshots of the experimental hexapod, HexaBull-1, as it

walks over a gap in the terrain using the position controller.

(IV) and (V)). The hexapod gets stuck in that position because the front legs are not able to lift

the body as they are limited by the desired height while the middle is not able to make any ground

contact during the same time. The hexapod gets stuck and is not able to move from that position.

The main reason the experimental hexapod gets stuck in Fig, 6.24 is because the front legs

are not able to lift the body up. However, if the front side of the hexapod contacts the step in
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(III) (IV)

(V) (VI)

(VII) (VIII)

(IX) (X)

Figure 6.26: Screenshots of the experimental hexapod, HexaBull-1, as it walks over a gap in the

terrain using the FTP controller. The gap in the terrain is lower than the terrain by 7.62 cm.

Subfigures (I) to (X) show the 10 steps taken by the hexapod as it walks over the terrain. The ∆SD

and ∆SE are chosen such that the body height remains constant throughout the walking experiment.

(Adapted from [42])
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such a way that front gets lifted slightly due to friction, front movement is possible. Figure 6.25

shows the experimental hexapod walking over the gap in one such test. However, due to the gap

on the terrain, some of the legs are not able to reach the ground resulting in a lot of missed ground

contacts. In subplots (III) to (VI) in Fig. 6.25 shows the missed ground contacts by the middle

leg. Since the hexapod is walking using the alternating tripod gait where the middle leg holds one

side of the hexapod body, the experimental hexapod does fall during such missed ground contacts

(subplot (IV) of Fig. 6.25). Same is true from the hind legs in subplots (VII) to (VIII) in Fig. 6.25.

Even though the hexapod is able to walk over the terrain, the result is a sluggish walk which causes

some wear and tear on the hexapod structure.

Figure 6.26 shows screenshots of the experimental hexapod, HexaBull-1, as it walks over

the gap in the terrain. As can been seen, the body height remains constant throughout the walking

experiment. The ∆’s used in this experiment are same as the ones given in previous sections. As

the legs are able to change length are able to match the terrain, the legs are able to tackle the gap

on the terrain without any change in the body height.

6.3.4 Changing Elevate and Depress Rates

Figure 6.27 shows the effect of using different ∆SE as the experimental hexapod, HexaBull-

1, walks on Terrain C. As can be seen, the legs returns to the normal stepping pattern faster when

larger ∆SE is used. The ∆SE = 0.03 ∗∆FD works very well for HexaBull-1 walking on hardware

terrains described in previous section.

6.3.5 Foot Forces during Multiple Gaits

Figure 6.28 shows the foot depression and compliant actuator position of all the three legs

on the right side of the experimental hexapod, HexaBull-2, walking using the alternating tripod
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Figure 6.27: Effect of slow foot elevation: Foot depression of the front right leg of the experimental

hexapod, HexaBull-1, as it walks down a step using three different ∆SE . (Adapted from [42])

gait on flat terrain. The front and the hind leg are a part of one tripod while the middle is part of

another and is phase shifted. As can been seen in the figure, each leg has similar foot force profile

based on the actuator position and are quite similar from one step to another. The shapes of the

foot force profile for each leg is based on the amount of load on that leg as well as the stepping

pattern.

One thing to note is that for the experimental hexapod, HexaBull-2, since only one battery

is used and is attached at the lower part of the hexapod body, the weight lifted by the hind legs is

more than the weight held by the front. Therefore, at every touchdown, the foot forces for the front

leg is smaller compared to the hind legs which hold more weight until the other tripod (middle leg

in figure) lifts off the ground.
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Figure 6.28: Tripod gait: Foot depression and compliant actuator position of all the legs on right

side of the experimental hexapod, HexaBull-2, as it walks on flat terrain using the alternating tripod

gait.

Comparing the compliant actuator position in HexaBull-1 in Fig. 6.22 and 6.23 with the

actuator position in Fig. 6.28, the benefits of using Dynamixel MX-28T can be seen over AX-18A.

The position error in much more smooth and has considerably less number of errors compared to

AX-18A. Also, the change in the actuator position (in terms of angle) is much smaller in MX-28T

compared to the AX-18A. This is because a position error of 30 in AX-18A is 8.7◦ (resolution is

0.29◦ - See Table A.1) while a position error of 40 in MX-28T is 3.52◦ (resolution is 0.088◦ - See

Table A.3).

Figure 6.29 and 6.30 shows the foot depression and compliant actuator position of all the

three legs on the right side of the experimental hexapod, HexaBull-2, walking using the ripple and
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Figure 6.29: Ripple gait: Foot depression and compliant actuator position of all the legs on right

side of the experimental hexapod, HexaBull-2, as it walks on flat terrain using the alternating ripple

gait.

the wave gait on flat terrain. Similar to Fig. 6.28, the shapes of the foot force profile for each leg

is not only based on the amount of load on that leg as well as the stepping pattern. The change in

gait causes stepping pattern to change causing the foot force profiles to be completely different for

all the different gaits.

All the three figures (Fig. 6.28, 6.29 and 6.30) show the uniqueness of the foot force

produced by the legs during walking. The force profiles not only are dependent of the body

structure but also the gait, timing and foot touchdown of all the legs of the hexapod. The range of

force patterns for uneven terrains changes based on the terrain. Trying to replicate all force profiles
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Figure 6.30: Wave gait: Foot depression and compliant actuator position of all the legs on right

side of the experimental hexapod, HexaBull-2, as it walks on flat terrain using the alternating wave

gait.

to be emulated by each leg for all possible scenarios would be a very tedious task. This would be

one more advantage of using force thresholds instead of emulating foot force profiles.

6.4 System Analysis

The experimental hexapod system uses three CM-700 control modules along with 18 Dy-

namixel MX-28T/AX-18A actuators along with 6 Dynamixel RX-28 actuators. The CM-700

control module uses ATmega2561 8-bit AVR RISC-based micro-controller (16 MHz frequency and

256 Kb flash program memory) while the Dynamixel AX-18A and Dynamixel RX-28 actuators
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use the ATMega8 8-bit AVR RISC-based micro-controller (16 MHz frequency and 8 Kb flash

program memory) and the Dynamixel MX-28T uses the ARM Cortex-M3 32-bit processor (72

MHz frequency). Thus, the hexapod uses 27 micro-controllers for its operation.

The FTP controller code is copies in the three CM-700 control modules. The FTP algorithm

HEX file containing the code and associated libraries which runs on the CM-700 boards takes up

19.1 KB program memory while the data memory required for operation is 795 Bytes. Thus, the

whole FTP algorithm is run on three 8-bit micro-controllers using 57.3 KB program memory in

total and uses 2.3 KB data memory.

6.5 Summary

A number of experiments have been performed, both in simulation and hardware, which

shows the working of the FTP controller. The results verify the expected behaviors of the FTP

controller. The FTP controller is able to successfully navigate almost all of the terrains that were

created. The FTP controller is also able to achieve ground contact at each step and, therefore,

forward movement. The FTP controller was successfully able to walk over obstacles and gaps

of heights 10.16 cm. Apart from walking on uneven terrain, the FTP controller was also able to

maintain the desired body height even across uneven terrains.
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CHAPTER 7: SIDE STEPPING AND TURNING

7.1 Introduction

So far the working of the FTP algorithm has been done for straight walking on uneven

terrain. The foot position of the leg is changed in the X and Z axis such that the leg can achieve

forward motion at each step. The foot position in the Y plane is kept constant and chosen such that

the leg can achieve the maximum clearance and the maximum depression (Z axis) while being able

to hold the body up while walking. The change in the foot position in X axis is based on position

control while the change in Z axis is based on the FTP control in stance phase and position control

in the swing phase.

For a robot to navigate through uneven terrain, turning and side stepping along with the

forward and backward walking have to be implemented. Since force feedback is used to control

the foot position of the leg in the Z axis, the foot position in the X and Y axis can be controlled

using position control and be made dependent on the motion (walking, turning or side step) that is

required to be performed.

7.2 Leg Limitations

For turning and side stepping to be implemented using the FTP algorithm, the maximum

reach of the leg has to be found such that the maximum angle and side step distance the hexapod can

move be known. For the experiments performed in simulation and on the experimental hardware,
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the maximum distance in the X direction for forward motion was ±8 cm. The anterior extreme

position XAEP was +8 cm while the posterior extreme position XPEP was −8 cm and the position in

the X axis changed from anterior to the posterior extreme position in stance phase while walking

straight.
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Figure 7.1: Maximum stride of the hexapod leg: Positions in the X and Z plane the foot of the

hexapod leg can reach for a single Y value of 14 cm. The rectangle shown is the largest rectangle

found while maximizing the range in the X and Z axis.

The XAEP and XPEP values were found by using a search algorithm maximizing the range

in the X and Z axis while keeping the Y axis constant. Figure 7.1 shows the output of the search

algorithm when the position in the Y axis was kept constant at 14 cm. The blue dots show the

position that could be reached by the foot of the leg. The range is dependent on the link lengths of

the leg. The leg links used in the Fig. 7.1 can be seen in Table 5.1. Each point is checked using the
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inverse kinematics of the leg to find if there is at least one solution (or joint angle values) for the

leg such that the point can be reached by the foot. Please note that the positions the foot can reach

in the X axis is more than what is shown in the figure but the search has been limited to ± 14 cm

because, with a stride ≥ 14 cm, the legs of the hexapod in hardware are not able to hold the body

off the ground. The search algorithm tries to find the best rectangle in the given points such that

the area of the rectangle is the largest. The largest rectangle is shown in the figure.
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Figure 7.2: Maximum reach of the hexapod leg over the span of reachable Y values. Note that

Figure 7.1 is one slice of this figure at a distance of Y = 14 cm.

Figure 7.2 shows the range of positions the foot of the hexapod leg can reach in the Y and

Z axis. Figure 7.2 shows the largest rectangle for different values of Y. Individual position points

are not displayed in the figure. The rectangle is similar, with regards to the X axis, to Fig. 7.1 as all

the points between the XAEP and XPEP can be reached for the Y and Z values shown in the figure.
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Since the plot in Fig. 7.2 is not uniform, the walking behavior will have to be changed such that

turning and side stepping could be done on any terrain without the possibility of the foot reaching

singularity.

7.3 Foot Placement
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Figure 7.3: Manually selected leg movement range.

To maintain consistency in terms of turning angle and side stepping distance across all

terrains, extreme positions need to be found such that the foot is not commanded to move to a

singularity. Figure 7.3 shows the manually selected leg movement range in the Z and Y axis. The

shape is chosen as a parallelogram such that the leg will be able to achieve turning and side stepping

without sacrificing the range of motion in the Z axis. The shape also means that turning and side
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stepping can be achieved at any terrain height within the Z range. No matter what the height of

the terrain (Z value in the figure) is, the range of motion in the Y axis remains same. However, the

starting and ending positions of this range is dependent on the Z value. Please note that the range

in the Z axis (and also the X axis) have not been changed compared to straight walking.

7.4 Walking and Side Stepping in FTP Control

During straight walking, the foot position in the Y axis was kept constant. This approach

could still be used while straight walking. However, to keep the arm length of the hexapod close to

the body as possible, the foot position in the Y axis will be changed while walking straight. This

is done so that side stepping, turning and straight walking will have similar behaviors which can

be changed easily as the walking input changes.

For the hexapod to do side stepping, the foot positions in the Y axis have to change from

one extreme point to the other. Figure 7.4 showing the cyclic side stepping behavior used by

the FTP controller on flat terrain. The figure shows the hexapod side stepping to the right. The

behavior would be mirrored when side stepping to the left. The timing periods, used in this figure,

are the same that are used for walking (Fig. 4.4). Retract and protract phase in Y axis, start and end

the same time as in the X axis. The retract phase in Y starts at time step I and ends at III (protract

phase in Y goes from time step III to V and ends at I). The same retraction duty factor (0 <DR< 1)

in X axis controls the ratio of time between retract and protract phase during a single step.

For walking straight, during the retract phase, the position in Y has to bring the leg inward

until the foot touches the ground while during the protract phase, the position of the leg has to go

outward to go to the original position. Please note that based on the side the leg is attached to the

body the Y value would be positive or negative. But the direction with respect to the body will

remain same. For side stepping, the legs have to move in the direction the side step has to be done.

Figure 7.4 shows the change in position in the Y and Z axis when side stepping to the right.
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Position Control

FTP Control

DCLR

DREQ

DPRE

Figure 7.4: Cyclic behavior for side stepping to the right using the FTP algorithm on flat terrain.

DCLR is the preferred clearance while DREQ, DPRE , and DMAX are the required, preferred, and

maximum depression in the Z axis.

The position of Y is changed with respect to the Z axis such that the value of Y remains

inside the parallelogram at all times. The FTP algorithm uses two rates to deal with walking and

side stepping; ∆Search and ∆Step. ∆Search is dependent on the change in the Z axis and dependent

on the slope of the parallelogram. Thus, ∆Search = slope∗∆Z (Please note that ∆Z could be either

∆FD, ∆SD, ∆FE , ∆SE , or zero). ∆Step is the stepping rate and is dependent on either the maximum

distance the hexapod can side step or the turning distance and when walking straight, ∆Step is equal

to zero.
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Therefore, when walking straight, ∆Search changes according to ∆Z and follows the slope

of the parallelogram. When side stepping, ∆Search and ∆Step are added. The behavior is shown

in Fig. 7.4. From time step I to III, ∆Step is constant and is calculated based on the maximum

stepping distance. In the figure, ∆Z is ∆FD until touchdown and zero until time step II. After time

step II the foot is lifted off the ground in the swing phase using ∆FE . Since the change in Y is

dependent on the Z axis, the value of Y remains inside the parallelogram.
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Figure 7.5: Commanded and measured foot positions of contralateral pair of hexapod legs as the

hexapod walks straight in simulation suspended in air.

Figure 7.5 shows the commanded and measured foot position of a contralateral pair of legs

as the hexapod walks straight in simulation suspended in air. The contralateral pair of legs are

the front two legs of the hexapod. The hexapod is suspended by fixing the body to a specific

location in air and not allowing the body to move as the legs move to walk forward. The body is

suspended such that the legs do not touch the ground while walking. This experiment is done to
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see the behavior of the walking algorithm in the extreme condition. Since the foot never touches

the ground, the leg depressed using the fast depress rate ∆FD and elevated using the fast elevate

rate ∆FE . The figure shows three steps completed by the legs and as can be seen from the figure,

expected behavior results from the experiment.
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Figure 7.6: Commanded and measured foot positions of contralateral pair of hexapod legs as the

hexapod walks straight on an uneven terrain in simulation.

Figure 7.6 shows the commanded and measured foot position of a contralateral pair of legs

as the hexapod walks straight on an uneven terrain in simulation. The figure shows three steps

completed by the legs on a terrain with different heights.

Figure 7.7 shows the commanded and measured foot position of a contralateral pair of

legs as the hexapod side steps to the right suspended in air in simulation. The figure shows three

steps completed by the legs. At each step, the position of the foot in the Y axis changes based

on the ∆Search +∆Step rates which continues till the foot touches the ground or in this case, the
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Figure 7.7: Commanded and measured foot positions of contralateral pair of hexapod legs as the

hexapod side steps to the right suspended in air in simulation.

maximum depression that could be achieved is reached. After which the leg completes the side

step using the ∆Step till the end of retraction phase. Since the change in the Y position depends on

the Z position, the Y position is able to move within the boundaries of the parallelogram without

explicitly checking the boundaries.

Figure 7.8 shows the body position and angles of the hexapod side stepping to the right on

flat terrain in simulation. The figure shows three completed steps taken by the legs of the right

tripod. The left tripod starts in mid stance phase and only provides support and side movement

occurs till the end of the phase (1 sec mark). As can be seen in the figure, the hexapod is able to

achieve side movement equal to the twice the body width (Table 5.1) at the end of two completed

steps by the right and left tripod (5 sec mark). The second subplot shows the body angles (pitch,

roll, and yaw). The hexapod body is very stable when side stepping on a flat terrain.
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Figure 7.8: Body position and body angles of the hexapod as it side steps to the right on flat terrain

in simulation.

Figure 7.9 shows the body position and angles of the hexapod side stepping to the right on

Terrain E in simulation. The side movement achieved by the hexapod is dependent on the terrain.

For example, due to a step up on the terrain (3.5 and 5.5 sec mark), the leg is not able to climb

over the step sideways as quickly. The body angles (pitch, roll, and yaw) are also dependent on the

terrain.

Figure 7.10 shows the commanded and measured foot position of a contralateral pair of

legs as the hexapod side steps to the right on uneven terrain in simulation. The figure shows two
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Figure 7.9: Body position and body angles of the hexapod as it side steps to the right on uneven

terrain in simulation.

steps completed by the legs. Even on uneven terrain, the Y position is able to move within the

boundaries of the parallelogram without explicitly checking the boundaries.

7.5 Turning in FTP Control

To add turning in the FTP controller, the maximum angle that could be turned in the limits

imposed by the parallelogram was computed. Using inverse kinematics, the position of the body

and leg were found to make a turn of specific angle. Using this search, the maximum turn that

could be done in the limits of the parallelogram (Fig. 7.3) was found to be 22.5◦. Figure 7.11

shows the foot and hexapod body positions before and after taking a turn of 20◦. In this figure, the
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Figure 7.10: Commanded and measured foot positions of contralateral pair of hexapod legs as the

hexapod side steps to the right on uneven terrain in simulation.

left tripod takes a left turn of 20◦ while in place. The solid lines show the hexapod and the left

tripod legs before taking the turn while the dashed lines show the position after taking the turn.

The shaded position shows the maximum reach of this leg.

To make the implementation simple, only one angle was chosen for a turn step. Thus, if a

turn is commanded, a specific angle turn will be executed during the tripod step. The angle was

chosen as 15◦ as the angle is within the limits and also the greatest common divisor for higher

angles (30◦, 45◦ and 90◦). So a 90◦ or 180◦ turn could be done within some steps. The initial

and final position of the tripod feet are used to implement the turn. Since each leg has a different

behavior during turning, the X and Y positions for one tripod (either left or right) is stored and

altered, in real time, based on the direction of turn and the tripod (left or right).
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Figure 7.11: Initial (solid) and final (dashed) body and leg positions of the left tripod to execute a

20◦ left stationary turn in one step. Shaded areas represent the range of motion for each leg for a Z

value of 8 cm.

The implementation of turning is done the same way as side stepping and a turn rate is used

∆Turn (∆Step) to implement the turn. This rate is constant and dependent on the angle. Also, while

turning the rate in the X axis changes based on the positions stored.

Figure 7.12 shows the commanded and measured foot position of a contralateral pair of

legs as the hexapod side turns right in place on flat terrain in simulation. The figure shows three

steps completed by the legs. At each step, the position of the foot in the Y axis changes based on

the ∆Search +∆Turn rates which continues till the foot touches the ground. After touchdown the leg
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Figure 7.12: Commanded and measured foot positions of contralateral pair of hexapod legs as the

hexapod turns right in place on flat terrain in simulation.

finishes the turn using the ∆Turn till the end of retraction phase. Since the change in the Y position

due to turn angle depends on the Z position (as in the case of side stepping), the Y position is able

to move within the boundaries of the parallelogram without explicitly checking the boundaries.

However, as the turn angle does not utilize the full Y range and only turns 15◦ in a single step, the

Y position is well inside the parallelogram.

Figure 7.13 shows the body position and angles of the hexapod turning right on flat terrain

in simulation. The figure shows three completed steps taken by the legs of the right tripod. The

left tripod starts in mid stance phase and only provides support and side movement occurs till the

end of the phase (1 sec mark). As can be seen in the figure, the hexapod is able to achieve turn

angle of 15◦ at most steps resulting in a turn of almost 50◦ at the end of two completed steps by

the right and left tripod (5 sec mark). The second subplot shows the body angles (pitch, roll, and
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Figure 7.13: Body position and body angles of the hexapod as it turns right in place on flat terrain

in simulation.

yaw). The hexapod body is very stable when turning on a flat terrain. The oscillating behavior of

the body angles is expected while turning in place.

Figure 7.14 shows the commanded and measured foot position of a contralateral pair of legs

as the hexapod turns right on uneven terrain in simulation. The figure shows three steps completed

by the legs. Even on uneven terrain, the Y position is able to move within the boundaries of the

parallelogram without explicitly checking the boundaries. As can be seen in Fig. 7.15, the hexapod

is able to achieve turn angle of 15◦ at most steps resulting in a turn of almost 50◦ at the end of two

completed steps by the right and left tripod (5 sec mark). The oscillating behavior of the body

angles is more pronounced during this experiment but the hexapod is able to achieve the turn angle

even on uneven terrain with a lot of ease.
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Figure 7.14: Commanded and measured foot positions of contralateral pair of hexapod legs as the

hexapod turns right in place on uneven terrain in simulation.

7.6 Hardware Results

Figure 7.16 shows the commanded foot position of a contralateral pair of legs as the

hexapod, HexaBull-2, walking straight on flat terrain. The position in Y axis is changed based on

the Z axis. The behavior is similar to the one seen in simulation. As the rates in the experimental

hardware are different, the starting and ending positions are different compared to simulation. The

rates are changed to such that the experimental hexapod is faster and more responsive to the terrain.

Figure 7.16 shows the commanded foot position of a contralateral pair of legs as the

hexapod, HexaBull-2, side stepping on uneven terrain. Due to the increased rates, the Y position

goes beyond the parallelogram boundaries but is able to achieve the side step distance. Please
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Figure 7.15: Body position and body angles of the hexapod as it turns to the right on uneven terrain

in simulation.

note that the parallelogram boundaries in Fig. 7.16 and 7.16 are different than in simulation as the

boundaries are based on HexaBull-2 (Table 5.1).

7.7 Summary

This chapter gives a brief description of the implementation of side step and turning behav-

ior in the FTP controller. Few results showing the implementation of the behaviors in simulation

and hardware are provided. The individual behaviors can also be combined to give more com-

plicated maneuvers. For example, while doing side stepping, the FTP controller changes the Z

position based on the terrain while the position controller changes the Y position based on side
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Figure 7.16: Foot positions of contralateral pair of hexapod legs as the hexapod, HexaBull-2, walks

on flat terrain.

step direction. Also, the same is true for walking; the FTP controller changes the Z position while

the position controller changes the X position based on walking direction (front or back). Thus

side stepping can be combined with walking such that the hexapod is able to side step and walk at

the same time; resulting in four maneuvers based on the direction of walking and side stepping.

Also, while turning, the X position changes based on the turn angle and this angle is smaller

than the limits imposed by the XAEP and XPEP values. If the maximum value in X direction

(walking motion) is used during turning, the hexapod can walk and turn at the same time resulting

in four more advanced maneuvers.

Due to this implementation, the hexapod can be commanded to move in 14 different ways

while walking on flat or uneven terrain. Due to the robust nature of the FTP algorithm, all the

maneuvers can be done on uneven terrain without the loss of stability. The combination of such
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Figure 7.17: Foot positions of contralateral pair of hexapod legs as the hexapod, HexaBull-2, walks

sideways to the right on uneven terrain.

maneuvers while walking on uneven ground using local-leg control in a single system is, to the

best knowledge of the author, the first of its kind.

116



www.manaraa.com

CHAPTER 8: SUMMARY AND FUTURE WORK

8.1 Summary

A Force Threshold-based Position (FTP) algorithm to assist with legged locomotion over

irregular terrain has been presented along with simulation and hardware results of its implementa-

tion on a hexapod system. The hexapod is able to maneuver over uneven terrain without the use

of visual sensors to model the terrain, a priori information about the terrain, inertial or inter-leg

feedback for controlling the joints. The algorithm decouples the control of each leg, resulting in

increased responsiveness to the terrain, and stabilizes the body using only local leg feedback. The

local leg controller is inspired from multiple biological observations of legged animals.

The FTP algorithm was applied to multiple hexapod gaits without significant modification,

and could be applied to other hexapod morphologies. Threshold values, a preferred depression

level, and depression rates could be found based on the leg design and body weight. However, the

process of finding the optimum thresholds for different morphologies has not been generalized and

is currently resolved using a trial and error approach.

Due to the nature of the FTP algorithm, turning and side stepping functionality was added

with relative ease to the walking behavior. Experimental results, both in simulation and hardware,

have been provided. A wireless remote control has been added to show the functionality of the

FTP algorithm.

Individual behaviors of walking, side stepping, and turning have been combined to produce

advanced maneuvers while moving over uneven terrain. Based on the direction of walking, turning
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and side stepping, the hexapod can be commanded to move in 14 different ways while walking on

flat or uneven terrain. Also, these maneuvers could be done in any of the three gaits implemented

allowing a lot of flexibility to the hexapod system. The combination of all these maneuvers

implemented on a single system using local-leg controller for walking on uneven terrains is a

major achievement of this research work.

8.2 Contributions

The main contribution of this research work is the development of the distributed local-leg

controller, called the Force Threshold-based Position controller, and its implementation in simula-

tion and hardware. Biological hypotheses, generated from insect and animal walking studies, have

been implemented with this controller. The experimental hardware built for implementing the FTP

controller uses a novel way to approximate the foot forces needed for feedback. Another contri-

bution of this research work is the distributed nature of the hardware and the control algorithm

which makes the system more responsive, enabling the hexapod to achieve multiple gaits along

with maneuvering capabilities while using local leg controller to walk on uneven terrain. The

combination of all these features, to the best knowledge of the author, has not been implemented

in a single system. This system can form a basic platform on which more biological hypothesis

could be tested and verified. Lastly, this system can give more insight on the underlying control

system used by insects and animals for walking.

The FTP controller is built as a low-level reflexive system which is guided by a high level

controller overseeing its operation. An example of such coordination could be the working of

a search and rescue robot using the FTP controller to negotiate the uneven terrain while visual

sensors can intermittently pass the rough terrain information along with directional commands to

the FTP controller. This makes the walking behavior practically a background process while vision

sensors could be used for their main purpose of search and rescue, which is locating survivors
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or other artifacts of interest. If operated remotely, the operator could potentially focus more on

mission objectives rather than terrain modeling for optimal stepping of the legs.

8.3 Future Work

Further work on this algorithm will seek automated ways to generate the force thresholds

based on the weight, structure, and dimensions of the robot while also considering the walking gait

and timing parameters. Additional work is also required to tune the ∆ rates reactively based on the

terrain that is being sensed. Communication between legs might be needed to achieve this. Also,

research is required so that the timing and the gait can be reactively selected by the robot based on

the terrain.

Passive compliant elements can be added to the hexapod to check their effect on the walking

behavior. Many animal legs include compliance in their leg assembly which has been well studied.

Also, the legs of the hexapod could be changed to match those of the stick insect, in which, each

leg serves a different purpose while walking and has different structure and ranges.

The distribution of the control effort could be taken a step further by implementing a

distributed controller at the joint level. In the current implementation, the forward and inverse

kinematics must be computed at each control step. Instead of using foot force and position as

feedback terms, joint torque and angle may be adequate for robust walking. In addition to this,

other biological hypotheses can be tested using the FTP algorithm. As stated in the Introduction,

curiosity exists about the role of central pattern generators (CPGs) during walking. It has been

noted that posterior cockroach legs touch down very closely to the ground position of its anterior

neighbor [76]. When the posterior leg assumes support of the body, the anterior leg sees a decrease

in foot force which may trigger the end of its stance phase. This would indicate that leg phasing

can be achieved only through local leg controllers instead of a CPG. Testing the effectiveness of

this controller on a robotic system is well suited for the FTP algorithm, which is one of few leg
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control algorithms that can operate over rough terrain using only local leg controllers. Cruse also

puts forward a hypothesized model of leg coordination in which gait synchronization is achieved

through communication between neighboring legs [77]. The FTP algorithm can be augmented to

test the usefulness of these hypotheses on robotic systems negotiating complex terrain.

The FTP controller has potential for leg damage compensation in case of hardware faults

by changing the gait phasing and walking pattern of other legs after a fault is detected. The FTP

controller can be adapted to biped, quadruped, octopod, etc. locomotion. Currently, the algorithm

is being implemented on an upright quadruped system in simulation [78]. The basic operation of

both the quadruped and hexapod algorithms is similar with some minor changes to account for

the different general morphology. There are also pathways to running and climbing using the FTP

algorithm.

8.4 Conclusion

In conclusion, this dissertation has developed a distributed local force feedback control

algorithm for walking on flat and uneven terrains. The control algorithm can generate walking

behaviors using multiple gaits. Complex maneuvers like turning and side stepping have been

implemented. The FTP algorithm is not system dependent, and can be extended for implementation

on robots with different morphology and leg configurations. The FTP controller is built as a low-

level reflexive system and could be used as a black box system by high level controllers. Hopefully,

this dissertation will lay the foundation for future implementation for local-leg feedback algorithms

on legged systems in order to solve mobility issues facing legged robots.
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Appendix A: Hardware Specification

Hardware specifications for the hexapod components are given below.

Table A.1: Dynamixel AX-18A servo actuator statistics.

AX-18A Stats

Operating Voltage 12 V

Holding Torque
18 kg·cm

250 oz·in

No-load Speed 0.103 sec/60◦

Weight 54.5 g

Size 50 x 32 x 38 mm

Resolution 0.29◦

Reduction Ratio 1/254

Operating Angle 300◦ or Continuous Turn

Max Current 2200 mA

Standby Current 50 mA

Operating Temp −5◦C ∼ 85◦C

Protocol TTL Half Duplex Async Serial

Module Limit 254 valid addresses

Com Speed 7343 bps ∼ 1 Mbps

Position Feedback Yes

Temp Feedback Yes

Load Voltage Feedback Yes

Input Voltage Feedback Yes

Compliance/PID Yes

Material Plastic Gears and Body

Motor Cored Motor
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Appendix A: (continued)

Table A.2: Dynamixel RX-28 servo actuator statistics.

RX-28 Stats

Operating Voltage 16 V 12 V

Holding Torque
37.7 kg·cm 28.3 kg·cm

523.55 oz·in 393 oz·in

No-load Speed 0.126 sec/60◦ 0.167 sec/60◦

Weight 72 g

Size 50.6 x 35.6 x 35.5 mm

Resolution 0.29◦

Reduction Ratio 1/193

Operating Angle 300◦ or Continuous Turn

Max Current 1200 mA

Standby Current 50 mA

Operating Temp −5◦C ∼ 85◦C

Protocol RS485 Asynchronous Serial

Module Limit 254 valid addresses

Com Speed 7343 bps ∼ 1 Mbps

Position Feedback Yes

Temp Feedback Yes

Load Voltage Feedback Yes

Input Voltage Feedback Yes

Compliance/PID Yes

Material
Metal Gears &

Engineering Plastic Body

Motor Maxon RE-MAX
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Appendix A: (continued)

Table A.3: Dynamixel MX-28T servo actuator statistics.

MX-28T Stats

Operating Voltage 14.8 V 12 V

Holding Torque

31.6 kg·cm 25.5 kg·cm

439 oz·in 354 oz·in

3.1 N·m 2.5 N·m

No-load Speed 67 RPM 55 RPM

Weight 72 g

Size 35.6 x 50.6 x 35.5 mm

Resolution 0.088◦

Reduction Ratio 1/193

Operating Angle 360◦ or Continuous Turn

Max Current 1.4A @ 12V

Standby Current 100 mA

Operating Temp −5◦C ∼ 85◦C

Protocol TTL Asynchronous Serial

Module Limit 254 valid addresses

Com Speed 8000 bps ∼ 3 Mbps

Position Feedback Yes

Temp Feedback Yes

Load Voltage Feedback Yes

Input Voltage Feedback Yes

Compliance/PID Yes

Material
Metal Gears &

Engineering Plastic Body

Motor Maxon RE-MAX

Table A.4: Dynamixel CM-700 controller statistics.

CM-700 Stats

Operating Voltage 7 V - 35 V

Weight 37.3 g

Size 50 x 32 x 38 mm

Max Current 10 A

Idle Current 40 mA

Operating Temp −5◦C ∼ 70◦C

Protocol TTL/RS485 Communication
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under the terms of the Creative Commons Attribution (CC-BY) Licence (the terms of which are set out at
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No permission is required from the authors or the publishers under the CC-BY licence. 

Authors who pay the Open Access fee are permitted to post the final, published PDF of their article on a

website, institutional repository or other free public server, immediately upon publication, provided a link is

included between the web page containing the Article and the Journal’s website at http://jeb.biologists.org/.

Copyright and reproduction

Articles in JEB are published under an exclusive, worldwide licence granted to the publisher by the authors,

who retain copyright. For full details of Open Access article use, see Open Access rights above.

Permission to use material from JEB in other publications

Authors are free to reproduce material from their own articles in other publications. Other individuals must first

seek permission from The Company of Biologists to reproduce material by sending an email to

permissions@biologists.com

Permission to use material from other publications in JEB

It is the responsibility of the author to obtain permission to use material (e.g. figures) from another publication

in any article submitted to JEB and to ensure that any such use is credited to the source. Written permission

from the author and/or publisher of the original material, if required, should be provided at the time of

submission, otherwise publication may be delayed. If you have modified a figure from a previously published

figure, please check with the copyright owners to see whether permission is required and include a complete

citation/reference for the original article.

For all other matters relating to the reproduction of material, please email permissions@biologists.com
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